共查询到20条相似文献,搜索用时 0 毫秒
1.
Ibrahim Cakmak Daniel S. Song T. Andrew Mixson Eduardo Serrano Meredith L. Clement Amy Savitski Ge’Andra Johnson Tugrul Giray Charles I. Abramson John F. Barthell Harrington Wells 《Journal of Insect Behavior》2010,23(2):100-116
Foraging behavior of Apis mellifera caucasica, A.m. carnica and A.m. syriaca in Turkey was studied for intrinsic subspecies-based differences. Models of forager flower-color fidelity, risk sensitive behavior and maximizing net gain were tested. Foragers were presented artificial flower patches containing blue, white and yellow flowers. Some bees of each subspecies showed high fidelity to yellow flowers, while others favored blue and white flowers. The degree of fidelity, however, differed among subspecies and was dependent upon which color was favored. Bees of all subspecies demonstrated risk indifferent behavior regardless of whether they favored yellow flowers or blue and white flowers. Flower handling time differed among subspecies and increased with reward quantity, and when a reward was present. Flight time between consecutive flowers also differed among honey bee subspecies. Foragers of all subspecies had a higher net gain when visiting flowers with consistent rewards. 相似文献
2.
The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control. 相似文献
3.
Gillian Hertlein Sebastian Müller Eva Garcia-Gonzalez Lena Poppinga Roderich D. Süssmuth Elke Genersch 《PloS one》2014,9(9)
The Gram-positive bacterium Paenibacillus larvae is the etiological agent of American Foulbrood. This bacterial infection of honey bee brood is a notifiable epizootic posing a serious threat to global honey bee health because not only individual larvae but also entire colonies succumb to the disease. In the recent past considerable progress has been made in elucidating molecular aspects of host pathogen interactions during pathogenesis of P. larvae infections. Especially the sequencing and annotation of the complete genome of P. larvae was a major step forward and revealed the existence of several giant gene clusters coding for non-ribosomal peptide synthetases which might act as putative virulence factors. We here present the detailed analysis of one of these clusters which we demonstrated to be responsible for the biosynthesis of bacillibactin, a P. larvae siderophore. We first established culture conditions allowing the growth of P. larvae under iron-limited conditions and triggering siderophore production by P. larvae. Using a gene disruption strategy we linked siderophore production to the expression of an uninterrupted bacillibactin gene cluster. In silico analysis predicted the structure of a trimeric trithreonyl lactone (DHB-Gly-Thr)3 similar to the structure of bacillibactin produced by several Bacillus species. Mass spectrometric analysis unambiguously confirmed that the siderophore produced by P. larvae is identical to bacillibactin. Exposure bioassays demonstrated that P. larvae bacillibactin is not required for full virulence of P. larvae in laboratory exposure bioassays. This observation is consistent with results obtained for bacillibactin in other pathogenic bacteria. 相似文献
4.
Francis L. W. Ratnieks Martin H. Kärcher Verity Firth Danielle Parks Amanda Richards Paul Richards Heikki Helanterä 《Ethology : formerly Zeitschrift fur Tierpsychologie》2011,117(8):655-663
Honey bee, Apis mellifera, entrance guards use chemical cues to discriminate nestmates from non‐nestmates. Previous research has shown that when wax combs are reciprocally swapped between two colonies, guards become more accepting of workers from the swap partner. However, when combs were transferred only one way, guards in the comb‐receiver colony became more accepting of bees from the comb‐donor colony, but not vice versa. Hence, the increased acceptance of non‐nestmates caused by reciprocal comb swapping was not because of introduced bees acquiring odours from the transferred combs, which was surprising because comb wax was known to affect the odour of bees. In the current experiment, we caused workers to acquire either nestmate or non‐nestmate odours by holding them for 15 min in a tube, which had previously held nestmates or non‐nestmates and then measured their acceptance by entrance guards of nestmate or non‐nestmate hives. When transferred workers had acquired odours of non‐nestmates, acceptance by their own colony’s guards significantly decreased to 66% from 91%. Conversely, the acceptance of non‐nestmates that had acquired odours of the guards’ own nestmates was unchanged, 25% vs. 25%. These results show that when equivalent changes in the odour of introduced bees are made, guards are more sensitive to changes that cause nestmates to acquire non‐nestmate odours than vice versa. These results are also a likely explanation for the earlier and surprising results from the unidirectional comb swap experiment ( Couvillon et al. 2007 ). We make a hypothesis for the underlying mechanism in terms of a multidimensional recognition cue space. 相似文献
5.
Insuan S Deowanish S Klinbunga S Sittipraneed S Sylvester HA Wongsiri S 《Biochemical genetics》2007,45(3-4):345-361
Genetic diversity and population differentiation of the giant honey bee (Apis dorsata) in Thailand were examined. Six PCR-RFLP mitotypes were generated from digestion of the COI-COII, Cytb-tRNAser, ATPase6-8, and lrRNA genes with Dra
I and Hin
fI. Low genetic diversity (h=0.074, π=0.032%) and a lack of genetic population differentiation between A. dorsata originating from geographically different
regions were observed from mtDNA polymorphisms (P > 0.05). In contrast, microsatellite (A14, A24, and A88) polymorphisms revealed a relatively high level of genetic diversity in A. dorsata (H
o=0.68–0.74, average number of alleles per locus=6.0–9.0). Both A24 and A88 indicated significant population differentiation between bees from the north-to-central region (north, northeast, and central
regions), peninsular Thailand, and Samui Island. 相似文献
6.
When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant–pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly. 相似文献
7.
Bumblebees and honeybees deposit short-lived scent marks on flowers that they visit when foraging. Conspecifics use these marks to distinguish those flowers that have recently been emptied and, so, avoid them. The aim of this study was to assess how widespread this behavior is. Evidence for direct detection of reward levels was found in two bee species: Agapostemon nasutus was able to detect directly pollen availability in flowers with exposed anthers, while Apis mellifera appeared to be able to detect nectar levels of tubular flowers. A third species, Trigona fulviventris, avoided flowers that had recently been visited by conspecifies, regardless of reward levels, probably by using scent marks. Three further bee/flower systems were examined in which there was no detectable discrimination among flowers. We argue that bees probably rely on direct detection of rewards where this is allowed by the structure of the flower and on scent marks when feeding on flowers where the rewards are hidden. However, discrimination does not always occur. We suggest that discrimination may not always make economic sense; when visiting flowers with a low handling time, or flowers that are scarce, it may be more efficient to visit every flower that is encountered. 相似文献
8.
Wolfgang Wilms Vera L Imperatriz-Fonseca Wolf Engels 《Studies on Neotropical Fauna and Environment》2013,48(3-4):137-151
The highly eusocial bee community of the neotropical Atlantic Rainforest was studied at Boracéia Biological Station in the state of São Paulo, Brazil. In this reserve, 17 species of stingless bees and the introduced Africanized honey bee were found, the latter being the most abundant flower visitor. Of all flowering plants, Asteraceae and Myrtaceae were particularly important as resources for bees. Trophic niche overlap between the various species of stingless bees is evident, and it was generally larger within the tribes Meliponini and Trigonini than between members of different tribes. Nevertheless, in the stingless bee community the competitive pressure is rather uniformly spread. The trophic niche of the Africanized honey bee can be positioned between those of Meliponini and Trigonini. Today this introduced species represents the main competitor in this bee community. However, its impact on native stingless bee populations is apparently buffered by mass-flowering trees which are the most important food plants of the indigenous highly eusocial bees. 相似文献
9.
Background
The 21-residue compact tertiapin-Q (TPNQ) toxin, a derivative of honey bee toxin tertiapin (TPN), is a potent blocker of inward-rectifier K+ channel subtype, rat Kir1.1 (rKir1.1) channel, and their interaction mechanism remains unclear.Principal Findings
Based on the flexible feature of potassium channel turrets, a good starting rKir1.1 channel structure was modeled for the accessibility of rKir1.1 channel turrets to TPNQ toxin. In combination with experimental alanine scanning mutagenesis data, computational approaches were further used to obtain a reasonable TPNQ toxin-rKir1.1 channel complex structure, which was completely different from the known binding modes between animal toxins and potassium channels. TPNQ toxin mainly adopted its helical domain as the channel-interacting surface together with His12 as the pore-blocking residue. The important Gln13 residue mainly contacted channel residues near the selectivity filter, and Lys20 residue was surrounded by a polar “groove” formed by Arg118, Thr119, Glu123, and Asn124 in the channel turret. On the other hand, four turrets of rKir1.1 channel gathered to form a narrow pore entryway for TPNQ toxin recognition. The Phe146 and Phe148 residues in the channel pore region formed strong hydrophobic protrusions, and produced dominant nonpolar interactions with toxin residues. These specific structure features of rKir1.1 channel vestibule well matched the binding of potent TPNQ toxin, and likely restricted the binding of the classical animal toxins.Conclusions/Significance
The TPNQ toxin-rKir1.1 channel complex structure not only revealed their unique interaction mechanism, but also would highlight the diverse animal toxin-potassium channel interactions, and elucidate the relative insensitivity of rKir1.1 channel towards animal toxins. 相似文献10.
Kirk J. Grubbs Jarrod J. Scott Kevin J. Budsberg Harry Read Teri C. Balser Cameron R. Currie 《PloS one》2015,10(4)
Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. 相似文献
11.
12.
Erin M. Scherer Robin A. Smith Cassandra A. Simonich Nixon Niyonzima Joseph J. Carter Denise A. Galloway 《PLoS pathogens》2014,10(10)
Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses. 相似文献
13.
本文用酶联免疫检测(ELIsA)技术研究三叶-心期喷施AgNO3诱导苦瓜纯雌系完全花分化过程中花蕾与幼叶中内源激素含量变化。结果显示:喷施AgNO,后幼叶中IAA、GA,、ZR和ABA含量与喷水的相比,都是先下降后增加。AgNO3处理的花蕾中这4种激素含量在72h内没有一致变化规律,但变化幅度大于幼叶的,表明生殖器官的内源激素对苦瓜性别分化影响比营养器官的大。AgNO3处理后24-48h内,花蕾中这4种激素的含量明显低于喷水的,而其余时间则高于喷水的。此外,AgNO3处理的花蕾中ABA/IAA、ZR/I从和GA3/IAA比值也在2448h发生剧烈的变化,48h之后这些激素比值与喷水的相差不大。这些结果说明了AgNO3处理后24-48h是苦瓜纯雌系性别分化的关键时期,IAA可能是诱导纯雌系苦瓜雄性分化的关键激素。 相似文献
14.
Vincent Piou Jérémy Tabart Virginie Urrutia Jean-Louis Hemptinne Angélique Vétillard 《PloS one》2016,11(4)
Varroa destructor is a parasitic mite of the honeybee that causes thousands of colony losses worldwide. The parasite cycle is composed of a phoretic and a reproductive phase. During the former, mites stay on adult bees, mostly on nurses, to feed on hemolymph. During the latter, the parasites enter brood cells and reproduce. We investigated if the type of bees on which Varroa stays during the phoretic phase and if the duration of this stay influenced the reproductive success of the parasite and the damage caused to bees. For that purpose, we used an in vitro rearing method developed in our laboratory to assess egg laying rate and the presence and number of fully molted daughters. The expression level of two Varroa vitellogenin genes (VdVg1 and VdVg2), known to vary throughout reproduction, was also quantified. Results showed that the status of the bees or time spent during the phoretic phase impacts neither reproduction parameters nor the Varroa vitellogenin genes levels of expression. However, we correlated these parameters to the gene expression and demonstrated that daughters expressed the vitellogenin genes at lower levels than their mother. Regarding the damage to bees, the data indicated that a longer stay on adult bees during the phoretic phase resulted in more frequent physical deformity in newborn bees. We showed that those mites carry more viral loads of the Deformed Wing Virus and hence trigger more frequently overt infections. This study provides new perspectives towards a better understanding of the Varroa-honeybee interactions. 相似文献
15.
16.
17.
《Journal of steroid biochemistry》1982,16(6):591-597
In the previous paper (J. steroid Biochem. 16 (1982) 437–446. [5]), we demonstrated that in vitro liver microsomal preparations of adult male rats possessed binding sites specific for progesterone (Prog) 2 of high affinity (KD ∼ 25.2 nM) and high capacity (Nmax ∼ 6.43 pmol/mg of microsomal protein), using 130 mM NaCl-based incubation buffer. To explore the biological roles of liver microsomal Prog binding, we investigated the effects of such binding on liver microsomal Ca2+ pump activity. Firstly, we obtained results similar to those previously obtained concerning the characteristics of microsomal Prog binding using 100 mM KCl-based incubation buffer, usually used for experiments on microsomal Ca2+ pump activity. For microsomal 45Ca2+ uptake we also obtained results similar to those already demonstrated by several investigators. That is to say liver microsomal 45Ca2+ uptake was markedly increased by the addition of 30 mM oxalate and 5 mM ATP, and was not inhibited by the addition of 5 mM NaN3 into the incubation buffer. However, the addition of 1.0 μM Prog, as well as 17β-hydroxy-5α-androstan-3-one (5α-DHT) and estradiol-17β (E2 -17β), which should be a sufficiently saturable concentration for liver microsomal binding sites specific for it, affected little microsomal 45Ca2+ uptake statistically, though microsomal binding capacity for Prog was 5–10 times higher than that for 5α-DHT and E2-17β. In addition, Prog (1.0 μM) had little effect on 45Ca2+ release from prelabeled microsomes. In conclusion, we suggest, therefore, that there is no direct correlation between binding of sex hormones and Ca2+ pump activity by rat liver microsomal preparations. 相似文献
18.
Modulation of Competition between Fruits and Leaves by Flower Pruning and Water Fogging, and Consequences on Tomato Leaf and Fruit Growth 总被引:2,自引:0,他引:2
The effects of water fogging and reducing plant fruit load werestudied in a tomato crop grown in a glasshouse under Mediterraneansummer conditions. The objective of these treatments was toreduce competition between leaves and fruits for carbohydratesand water. Flower pruning increased plant leaf area and increasedfruit, stem, lamina and petiole dry mass (DM). This indicatesthat leaf area growth was limited during the summer due to competitionbetween fruits and leaves for assimilates. In contrast, reducingthe air vapour pressure deficit (VPD) by water fogging had noeffect on plant leaf area or aerial plant DM. Interestingly,there was a significant interaction between plant fruit loadand VPD: the higher the leaf[ratio]fruit ratio the greater theresponses to a reduction in VPD (increase in fruit DM, fruitdiameter, fruit and leaf expansion rate). The data suggest thatunder high fruit loads, water and carbohydrates limit growthunder Mediterranean summer conditions. However, reducing VPDwas not always sufficient to enhance fruit and leaf growth.This might be due to the lower leaf area under high fruit load.In contrast, reducing VPD under low fruit load triggered higherrates of leaf and fruit expansion; this is probably linked toa greater availability of water and carbohydrates. Copyright2001 Annals of Botany Company Assimilate competition, assimilate supply, flower pruning, fruit load, fruit growth, generative/vegetative growth, leaf growth, Lycopersicon esculentum, specific leaf weight, tomato, vapour pressure deficit, water stress 相似文献
19.
Jean-Louis Kraus 《Russian Journal of Bioorganic Chemistry》2020,46(5):869-872
Russian Journal of Bioorganic Chemistry - Cholesterol and sitosterol are two members of the steroid family, which molecular structures differ only by the presence of an ethyl substituent at the... 相似文献
20.
Minako Nagao Hirofumi Fujita Masako Ochiai Keiji Wakabayashi Toshio Sofuni Taijiro Matsushima Takashi Sugimura Toshikazu Ushijima 《Mutation research》1998,400(1-2):251-257
The carcinogenicity of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) was examined in Big Blue® female mice with the genetic background of C57BL/6N. With the administration of 300 ppm of MeIQ in their diet for 92 weeks, the Big Blue® female mice developed intestinal tumors and hepatocellular carcinomas. The incidences of adenocarcinomas were 42% (8/19) in the colon and 68% (13/19) in the cecum. The incidence of hepatocellular carcinomas was 84% (16/19). No carcinomas of the intestine or the liver were induced in the control group. As we previously reported, administration of 300 ppm of MeIQ in a diet for 12 weeks induced lacI mutants at the highest frequency in colonocytes, and at only less than one-tenth of the colon in cells of the liver, forestomach and bone marrow, indicating no direct correlation between the lacI mutant frequency (MF) and cancer incidence (CI). The fate of cells with lacI mutation in each organ should be taken into consideration to validate MF as an indicator of carcinogenic potency of a chemical in different organs. 相似文献