首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild pigs (Sus scrofa; i.e., feral hogs, feral swine) are considered an invasive species in the United States. Where they occur, they damage agricultural crops and wildlife habitat. Wild pigs also depredate native wildlife, particularly ground-nesting bird species during nesting season. In areas inhabited by wild turkeys (Meleagris gallopavo), nest destruction caused by wild pigs may affect recruitment. There is debate whether wild pigs actively seek ground-nesting bird nests or depredate them opportunistically. To address this debate, in 2016 we examined the movements of wild pigs relative to artificial wild turkey nests (i.e., control [no artificial nests], moderate density [12.5–25 nests/km2], and high density [25–50 nests/km2]) throughout the nesting season (i.e., early, peak, and late) in south-central Texas, USA. We found no evidence that wild pigs learned to seek and depredate wild turkey nests relative to nest density or nesting periods. Despite wild pigs being important nest predators, depredation was not a functional response to a pulsed food resource and can only be associated with overlapping densities of wild pigs and nests. Protecting reproductive success of wild turkeys will require reducing wild pig densities in nesting habitat prior to nesting season. © 2019 The Wildlife Society.  相似文献   

2.
In aquatic systems, prey animals associate predation risk with cues that originate either from the predator or from injured conspecifics. Sources and benefits of these cues have received considerable attention in river, lake, and pond ecosystems but are less well understood in small container ecosystems that can hold less than a liter of water. Mosquitoes Aedes triseriatus (Say) and Aedes albopictus (Skuse) encounter predatory Corethrella appendiculata (Grabham) and Toxorhynchites rutilus (Coquillett) in small containers and show antipredatory behavioral responses. We investigated the sources of the predation cues to which these prey larvae respond. We tested whether Ae. albopictus larvae show behavioral responses to cues emanating from the predator or from damage to prey caused by the act of predation. We also tested whether Ae. triseriatus respond to cues present in fluid or solid residues from predator activity. Ae. albopictus showed behavioral modifications only in response to waterborne cues from a feeding predator and not to cues from a starving predator, indicating that Ae. albopictus respond to cues created by the act of predation, which could include substances derived from damaged prey or substances in predator feces. Ae. triseriatus showed behavioral responses to solid residues from predation but not to fluid without those solids, indicating that the cues to which they respond originate in predator feces or uneaten prey body parts. Our results suggest that cues in this system may be primarily chemicals that are detected upon contact with solid residues that are products of the feeding processes of these predators.  相似文献   

3.
Golden hamsters (Mesocricetus auratus) use olfactory cues to assess traits of conspecifics such as kinship, individual identity, and reproductive status. The environment, however, is full of a wide variety of other olfactory information such as signals emitted by some of the hamster’s primary predators. Given this, we hypothesized that hamsters use odors from predators as an indirect sign of increased predation risk in the environment. In addition, based on data that show that wild hamsters are diurnal while laboratory hamsters are nocturnal, we hypothesized that if golden hamsters did respond to the predator odors, perceived predator risk might influence daily activity patterns in hamsters. We tested male and female hamsters over 5 d with scent gland secretion from domestic ferrets (Mustela putorius furo) and compared their behavior to that observed when they were exposed to a clean arena. In response to the predator odor, subjects significantly decreased the amount of time active outside of their burrow, returned to their burrow more quickly, and spent less time near the predator odor than the clean control stimulus. These results strongly support our hypothesis that hamsters, like other species of small mammals, avoid predator odors. The results did not, however, support our second hypothesis that exposure to predator odors during the dark phase of the light cycle would elicit a switch to a more diurnal pattern of activity. More work is needed to understand how environmental cues and internal mechanisms interact to shape activity patterns.  相似文献   

4.
Aquatic organisms often detect predators via water-borne chemical cues, and respond by showing reduced activity. Prey responses may be correlated with the concentration of predation cues, which would result in graded antipredator behavioral responses that adjust potentially costly behavioral changes to levels that are commensurate with the risk of predation. Larvae of the predatory mosquito Toxorhynchites rutilus prey upon other container-dwelling insects, including larvae of the mosquito Ochlerotatus triseriatus. Previous work has established that O. triseriatus reduce movement, foraging, and time below the surface, and increase the frequency of resting at the surface, in the presence of water-borne cues from predation by T. rutilus. We tested whether these responses by O. triseriatus are threat sensitive by recording behavior of fourth instar larvae in two runs of an experiment in which we created a series of concentrations (100, 10, 1, 0.1, and 0.01% and 100, 70, 40, 20, and 10%) of water that had held either O. triseriatus larvae alone (control) or a T. rutilus larva feeding on O. triseriatus (predation). We also tested whether associated effects on time spent feeding are threat sensitive by determining whether frequencies of filtering or browsing are also related to concentration of cues. The frequencies of resting and surface declined, whereas frequency of filtering (but not browsing) increased more rapidly with a decrease in concentration of predation cues compared with control cues. Thus, O. triseriatus shows a threat sensitive behavioral response to water-borne cues from this predator, adjusting its degree of behavioral response to the apparent risk of predation.  相似文献   

5.
Larvae of the mosquito Toxorhynchites rutilus (Coquillett) prey upon other container-dwelling insects, including larvae of Aedes albopictus (Skuse), which is native to Asia but was introduced into the United States, and on the native tree hole mosquito Ochlerotatus triseriatus (Say). Previous work has established that O. triseriatus adopts low-risk behaviors in the presence of predation risk from T. rutilus. It is unknown whether introduced A. albopictus show a similar response to this predator. Behavior of fourth instars of A. albopictus or O. triseriatus was recorded in water that had held either A. albopictus or O. triseriatus larvae alone (control) and in water that had held T. rutilus larvae feeding on either A. albopictus or O. triseriatus (predation). Activity and position of larvae were recorded in 30-min instantaneous scan censuses. In response to water-borne cues to predation, O. triseriatus adopted low-risk behaviors (more resting, less feeding and movement), but A. albopictus did not change its behavior. We also tested the species specificity of the cues by recording the behavior of A. albopictus in water prepared using O. triseriatus and vice versa. O. triseriatus adopted low-risk behaviors even in predation water prepared by feeding T. rutilus with A. albopictus, but A. albopictus did not alter its behavior significantly between predation and control treatments prepared using O. triseriatus. Thus, A. albopictus does not seem to respond behaviorally to cues produced by this predator and may be more vulnerable to predation than is O. triseriatus.  相似文献   

6.
Forest loss and fragmentation in Indonesia may seriously affect the survivorship of forest birds and lead to local extinction of bird populations. We used 786 artificial nests baited with quail eggs to examine the effect of habitat alteration on nest predation in Lore Lindu National Park, Sulawesi. Natural forest and four habitats of forest margin areas: forest edge, forest gardens, coffee plantations, and secondary forest, were studied. Two types of artificial nests, ground and shrub nests were placed in these habitats at two different locations for a period of 8 days. In addition, we used automatic cameras and cage-traps to identify the predators. Nests in shrubs experienced significantly higher predation rates in forest margin areas than in natural forest. Predation on ground nests did not differ significantly between these habitat types, but was significantly higher than that on shrub nests in each habitat except forest edge. Rodents were the most common predators of both nests, but shrub nests were also susceptible to Dwarf cuscus (Strigocuscus celebensis), squirrels, and tree snakes. The nest predation rates we found were among the highest found in tropical rainforests, probably a consequence of the unique predator assemblages of Sulawesi. These results suggest that egg survival is negatively affected by human intervention and that human-induced habitats might have only limited importance for the conservation of Sulawesi's largely endemic understorey avifauna. These considerations might be important since forest margins comprise significant proportions of protected areas on Sulawesi and play an important role in future Park zoning concepts as well as in conservation-oriented land use management.  相似文献   

7.
Knowledge on the population of genetic structure and ecological behaviour of Apis dorsata from Peninsular Malaysia is needed for effective management and conservation of this species since unsustainable whole solitary low nest cutting for product harvesting is the current common practice here. The analysis of 15 single locus DNA microsatellite markers on samples from 20 solitary nests of A. dorsata showed that while these markers were polymorphic, high intracolonial relatedness existed. Furthermore, in general, slightly negative values of intercolony relatedness (R) among the nests of A. dorsata were found. However, positive values of mean intercolony relatedness were observed between 54 pairs of nests out of 190 possible combinations. The R values among nest pairs 3-4 and 3-5 was higher than 0.50 showing that their queens were half siblings, whereas nest pair 19-20 showed relatedness of 0.95 indicating that the same queen was sampled. The results that we obtained could not conclusively support the hypothesis of this study that the honey hunters in Marang district of Malaysia repeatedly harvest the same nest located at a different site and at a different time during the same honey harvesting season. However, our finding of an appreciable level of intercolonial relatedness between several pairs of nests in this pioneer study indicated that a comprehensive study with a larger sample size of solitary nests found throughout the region would be necessary to provide concrete proof for this novel idea.  相似文献   

8.
Territorial males may adopt a mating tactic that yields greater reproductive success but that at the same time increases the risk of predation. Plasticity in reproductive behavior can reflect a balance between sexual selection and natural selection. In this study, we sought to verify the effect of predation risk on territorial behavior of males of the solitary bee Ptilothrix fructifera (Apidae). Males of the species employ alternative mating tactics and can be territorial in defense of larval food sources. By manipulating predator models in the field, we tested whether (1) males avoid perch flowers containing predator models; (2) males alternate between mating tactics when their territory is associated with a predation risk; and (3) female foraging on flowers in a territory is altered in the presence of a predator model. We measured the responses of males and females in flowers containing and not containing a model of a spider or a stuffed bird. The results show that territorial males of P. fructifera alter their territorial behavior when faced with a high risk of predation. They do not abandon their territory or change to a non‐territorial mating tactic, but instead change the use of their territory, avoiding flowers containing predator models or perching on other flowers when the previous flower presented a potential predation risk. Female P. fructifera decreases the frequency of their visits to flowers and the length of time spent there in the presence of a spider model. In short, in the face of predation risk, females and males alter their behaviors at the cost of less efficient foraging and searching for partners, respectively.  相似文献   

9.
When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly.  相似文献   

10.
Many prey taxa use kairomones or alarm pheromones to assess the risk of predation in aquatic environments, and the rate at which these cues attenuate determines how precisely they indicate the local density of predators. We estimated the rate of degradation of chemical cues generated by Aeshna dragonfly larvae feeding on Rana temporaria tadpoles. The half‐life of the cue was 35 h and was not influenced by whether it was aged in pond water or tap water or whether other tadpoles were present in the container in which cue‐aging occurred. A review of other published estimates of predator cue half‐life revealed values of 0.2–126 h, and variation among studies was unrelated to the type of aging water, the venue in which water was aged or prey behavior observed (laboratory, field), or the type of behavior that was recorded. We conclude that factors affecting the persistence of predator cues remain uncertain in spite of their importance for understanding the evolution of induced defenses.  相似文献   

11.
Prey face a conflict between acquiring energy and avoiding predators and use both direct and indirect cues to assess predation risk. Illumination, an indirect cue, influences nocturnal rodent foraging behaviour. New Zealand holds no native rodent species but has introduced mice (Mus musculus) that severely impair native biodiversity. We used Giving-Up Densities (GUDs) and observations of foraging frequency and duration to assess if artificial light induces risk avoidance behaviour in mice and could limit their activity. We found both captive (wild strain) mice in outdoor pens and wild mice within a pest fenced sanctuary (Maungatautari, New Zealand) displayed avoidance behaviour in response to illumination. In captivity, total foraging effort was similar across lit and unlit pens but mice displayed a strong preference for removing seeds from dark control areas (mean: 15.33 SD: +/-11.64 per 3.5 hours) over illuminated areas (2.00 +/-3.44). Wild mice also removed fewer seeds from illuminated areas (0.42 +/-1.00 per 12 hours) compared to controls (6.67 +/-9.20). Captive mice spent less than 1.0% of available time at illuminated areas, versus 11.3% at controls; visited the lit areas less than control areas (12.00 +/- 9.77 versus 29.00 +/-21.58 visits respectively); and spent less time per visit at illuminated versus control areas (8.17 +/-7.83 versus 44.83 +/-87.52 seconds per visit respectively). Illumination could provide protection at ecologically sensitive sites, damaged exclusion fences awaiting repair, fence terminus zones of peninsula sanctuaries and shipping docks that service offshore islands. We promote the hypothesis that the tendency of mice to avoid illumination could be a useful conservation tool, and advance knowledge of risk assessment and foraging under perceived danger.  相似文献   

12.
A swampy nest site of the sweat bee Augochloropsis caerulans (Vachal, 1903) in southern Brazil is reported. The bees colonized small earth mounds scattered throughout a water-covered area. Although the substrate of these mounds has high organic matter content, the risk of microbial infestation seems not to be enhanced owing to permanent water saturation. The nests are shallow and can be found 3 cm above the water table. Each nest consists of a cluster of vertically oriented cells on pillars in an oval shaped cavity. The specific nest architecture is thought to mitigate microbial infestation of the brood and to prevent water excess. Nests of A. caerulans are not restricted to water-saturated substrates, but the specific nest architecture presumably enables the bee to propagate in such habitats.  相似文献   

13.
Deploying collective antipredator behaviors during periods of increased predation risk is a major determinant of individual fitness for most animal groups. Pea aphids, Acyrthosiphon pisum, which live in aggregations of genetically identical individuals produced via asexual reproduction warn nearby conspecifics of pending attack by secreting a volatile alarm pheromone. This alarm pheromone allows clone‐mates to evade predation by walking away or dropping off the host plant. Here, we test how a single alarm pheromone emission influences colony structure and defensive behavior in this species. Relative to control colonies, groups exposed to alarm pheromone exhibited pronounced escape behavior where many individuals relocated to adjacent leaves on the host plant. Alarm pheromone reception, however, also had subtle instar‐specific effects: The proportion of 1st instars feeding nearest the leaf petiole decreased as these individuals moved to adjacent leaves, while the proportion of 2nd–3rd instars feeding nearest the leaf petiole remained constant. Fourth instars also dispersed to neighboring leaves after pheromone exposure. Lastly, alarm pheromone reception caused maternal aphids to alter their preferred feeding sites in a genotype‐specific manner: Maternal aphids of the green genotype fed further from the petiole, while maternal aphids of the pink genotype fed closer to the petiole. Together, our results suggest that aphid colony responses to alarm pheromone constitute a diversity of nuanced instar‐ and genotype‐specific effects. These behavioral responses can dramatically change the spatial organization of colonies and their collective defensive behavior.  相似文献   

14.
EDWARD  BLYTH 《Ibis》1860,2(4):323-325
  相似文献   

15.
16.
17.
Our understanding of the effects of introduced invasive pollinators on plants has been exclusively drawn from studies on introduced social bees. One might expect, however, that the impacts of introduced solitary bees, with much lower population densities and fewer foragers, would be small. Yet little is known about the potential effects of naturalized solitary bees on the environment. We took advantage of the recent naturalization of an orchid bee, Euglossa viridissima, in southern Florida to study the effects of this solitary bee on reproduction of Solanum torvum, an invasive shrub. Flowers of S. torvum require specialized buzz pollination. Through timed floral visitor watches and two pollination treatments (control and pollen supplementation) at three forest edge and three open area sites, we found that the fruit set of S. torvum was pollen limited at the open sites where the native bees dominate, but was not pollen limited at the forest sites where the invasive orchid bees dominate. The orchid bee’s pollination efficiency was nearly double that of the native halictid bees, and was also slightly higher than that of the native carpenter bee. Experiments using small and large mesh cages (to deny or allow E. viridissima access, respectively) at one forest site indicated that when the orchid bee was excluded, the flowers set one-quarter as many fruit as when the bee was allowed access. The orchid bee was the most important pollinator of the weed at the forest sites, which could pose additional challenges to the management of this weed in the fragmented, endangered tropical hardwood forests in the region. This specialized invasive mutualism may promote populations of both the orchid bee and this noxious weed. Invasive solitary bees, particularly species that are specialized pollinators, appear to have more importance than has previously been recognized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Engaging in mating behaviors usually increases exposure to predators for both males and females. Anti‐predator strategies during reproduction may have important fitness consequences for prey. Previous studies have shown that individuals of several species adjust their reproductive behavior according to their assessment of predation risk, but few studies have explored potential sexual differences in these strategies. In this study, we investigate whether the acoustic cues associated with predatory attacks or those associated with predators themselves affect the mating behavior of female and male túngara frogs, Physalaemus pustulosus. We compared the responses of females approaching a mate and those of calling males when exposed to mating calls associated with sounds representing increased hazard. When presented with mating calls that differed only in whether or not they were followed by a predation‐related sound, females preferentially approached the call without predation‐related sounds. In contrast to females, calling males showed greater vocal response to calls associated with increased risk than to a call by itself. We found significant differences in the responses of females and males to several sounds associated with increased hazard. Females behaved more cautiously than males, suggesting that the sexes balance the risk of predation and the cost of cautious mating strategies differently.  相似文献   

19.
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.  相似文献   

20.
In two laboratory experiments we tested juvenile yellow perch, Perca flavescens, for behavioural responses to alarm cues of injured conspecifics and several prey guild members: adult perch, Iowa darters, Etheostoma exile and spottail shiners, Notropis hudsonius. Spottail shiners are phylogenetically distant to yellow perch whereas Iowa darters and perch are both members of the Family Percidae. Groups of juvenile yellow perch increased shoal cohesion and movement towards the substrate after detecting conspecific alarm cues when compared to cues of injured swordtails, Xiphophorus helleri, a species phylogenetically distant from perch. Individual juvenile perch increased shelter use and froze more when exposed to chemical alarm cues from both juvenile and adult perch, shiners and darters compared to exposure to injured swordtail cues or distilled water. The response to cues of darters may indicate that alarm cues are evolutionarily conserved within percid fishes or that perch had learned to recognize darter cues. The response to spot tail shiners likely represents learned recognition of the cues of a prey guild member.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号