首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
 Gravity directs the early polar development in single cells of Ceratopteris richardii Brogn. It acts over a limited period of time during which it irreversibly determines the axis of the spore cell's development. A self-referencing calcium selective electrode was utilized to record the net movement of calcium across the cell membrane at different positions around the periphery of the spore during the period in which gravity orients the polarity of the spore. A movement of calcium into the cell along the bottom and out of the cell along the top was detected. This movement was specific, polarized, and strongest in a direction that opposed the vector of gravity. Treatment with nifedipine, a calcium-channel blocker, diminished the calcium current and caused the cell to lose its responsiveness to the orienting influence of gravity. Results shown suggest that calcium plays a crucial role in the ability of a single cell to respond to gravity and in the subsequent establishment of its polarity. Received: 13 June 1999 / Accepted: 1 September 1999  相似文献   

2.
Rhizoids of the fern Ceratopteris richardii Brogn. usually emerge 40 h after germination is initiated by light, and more than 90% of them emerge growing in a downward direction. However, when the spores are germinated on a clinostat, the emerging rhizoids show no preferential orientation. This indicates that under normal 1 · g conditions the initial growth direction of rhizoids can be oriented by gravity. If the orientation of the spores is changed 3 h or less after the start of germination, the growth direction of most emerging rhizoids becomes downward relative to the new orientation. However, if the orientation of the spores is changed by 180° 8 h or more after germination is initiated by light, most rhizoids emerge growing upward; i.e., the same direction as if there had been no orientation change. Emerged rhizoids also do not change their direction of growth if their orientation is changed. These results indicate that the growth direction of emerging rhizoids is set by gravity prior to actual emergence, and that the time of full orientation responsiveness is limited to a period ranging from the initiation of germination to about 3–4 h after the start of germination. There is a gravity-oriented nuclear movement beginning at about 13 h after germination, and this movement appears to predict the initial growth direction of rhizoids.These studies were made possible by grant NAGW 1519 to S.J.R. and grant NGT-51065 to E.S.E., both from the National Aeronautics and Space Administration.  相似文献   

3.
4.
The cytokinins benzylaminopurine, kinetin and isopentenyladenine induce photomorphogenesis in dark-grown gametophytes of the fern Ceratopteris richardii. At sub-nanomolar concentrations each altered the rate and pattern of cell division, elongation and differentiation, mimicking aspects of the light-mediated transition from filamentous to prothallial growth. Untreated dark-grown gametophytes grow as narrow, elongate, asexual filaments with an apical meristem. Cytokinin treatments as low as 10(-12) M reduced the length-to-width ratio through decreased cell elongation, increased periclinal cell division and induced the formation of rhizoid initials in the cells immediately below the apical meristem. Higher concentrations (10(-9)-10(-8) M) induced conversion of the meristem from apical to notch morphology. Cytokinins induced both red- and blue-light-mediated photomorphogenic events, suggesting stimulation of both phytochrome and cryptochrome signaling; however, cytokinin treatment only partially substituted for light in that it did not induce hermaphroditic sexual development or spore germination in the dark. Additionally, cytokinins did not increase chlorophyll synthesis in dark-grown gametophytes, which unlike angiosperms are able to produce mature chloroplasts in the dark. Cytokinin treatment had only slight effects on light-grown gametophytes. These results suggest evolutionary conservation between angiosperms and pteridophytes in the role of cytokinins in regulating photomorphogenesis.  相似文献   

5.
6.
Homosporous ferns have extremely high chromosome numbers relative to flowering plants, but the species with the lowest chromosome numbers show gene expression patterns typical of diploid organisms, suggesting that they may be diploidized ancient polyploids. To investigate the role of polyploidy in fern genome evolution, and to provide permanent genetic resources for this neglected group, we constructed a high-resolution genetic linkage map of the homosporous fern model species, Ceratopteris richardii (n = 39). Linkage map construction employed 488 doubled haploid lines (DHLs) that were genotyped for 368 RFLP, 358 AFLP, and 3 isozyme markers. Forty-one linkage groups were recovered, with average spacing between markers of 3.18 cM. Most loci (approximately 76%) are duplicated and most duplicates occur on different linkage groups, indicating that as in other eukaryotic genomes, gene duplication plays a prominent role in shaping the architecture of fern genomes. Although past polyploidization is a potential mechanism for the observed abundance of gene duplicates, a wide range in the number of gene duplicates as well as the absence of large syntenic regions consisting of duplicated gene copies implies that small-scale duplications may be the primary mode of gene duplication in C. richardii. Alternatively, evidence of past polyploidization(s) may be masked by extensive chromosomal rearrangements as well as smaller-scale duplications and deletions following polyploidization(s).  相似文献   

7.
8.
9.
Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.  相似文献   

10.
Cortical interneuron dysfunction has been implicated in multiple human disorders including forms of epilepsy, mental retardation, and autism. Although significant advances have been made, understanding the biologic basis of these disorders will require a level of anatomic, molecular, and genetic detail of interneuron development that currently does not exist. To further delineate the pathways modulating interneuron development we performed fluorescent activated cell sorting (FACs) on genetically engineered mouse embryos that selectively express green fluorescent protein (GFP) in developing interneurons followed by whole genome microarray expression profiling on the isolated cells. Bioinformatics analysis revealed expression of both predicted and unexpected genes in developing cortical interneurons. Two unanticipated pathways discovered to be up regulated prior to interneurons differentiating in the cortex were ion channels/neurotransmitters and synaptic/vesicular related genes. A significant association of neurological disease related genes to the population of developing interneurons was found. These results have defined new and potentially important data on gene expression changes during the development of cortical interneurons. In addition, these data can be mined to uncover numerous novel genes involved in the generation of interneurons and may suggest genes/pathways potentially involved in a number of human neurological disorders.  相似文献   

11.
Summary The dry mass of two-celled Diplodia maydis spores was measured both before and after germination by quantitative interference microscopy. The dry mass of spores declined approximately 50% during germination. However, the dry mass of germinating spores plus the dry mass of their germ tubes was greater than the dry mass of spores before germination. We conclude that the germinating spores absorbed nutrients released from non-germinating spores.The dry mass of fungal spores can be estimated by weighing large numbers of spores and determining the mean from sample spore counts. Mumford and Pappelis(4) determined the total dry mass of individual spores of Fusarium roseum and the contained lipid bodies before and after spores germinated using quantitative interference microscopy. The mean spore dry mass before germination was 57 pg. Lipid bodies accounted for about 61% of that mass and decreased as spores germinated. The total dry mass of the spore and germ tube 24 hr later greatly exceeded that of the spore before germination. Quantitative interference microscopy has been used to measure the dry mass of various types of cells. Kulfinski and Pappelis (3) recently reviewed how this technique has been applied to plant cells. Technical aspects of interference microscopy have been described by Ross (6).The purpose of this study was to examine the dry mass changes in Diplodia maydis (Berk.) Sacc. with and without germ tubes through the use of interference microscopy.  相似文献   

12.
The Photocontrol of Spore Germination in the Fern Ceratopteris richardii   总被引:1,自引:0,他引:1  
This paper describes how different wavelengths of light regulatespore germination in the fern Ceratopteris richardii. This speciesdoes not exhibit any dark germination. Maximum photosensitivityof the spores is reached 7 to 10 d after imbibition. An increasein the red light fluence above the threshold fluence of 1016quanta.m–2 leads to a corresponding increase in germination.In sequential irradiation experiments, farred light can reversethis red light-mediated germination to the level observed withthe far-red light control. Blue light fluences above 1020 quanta.m–2can also block the germination response to red light. Moreover,this antagonistic effect of blue light is not reversed by subsequentirradiation with red light. It is therefore concluded that phytochromeand a distinct blue light photoreceptor control C. richardiispore germination. These interpretations are entirely consistentwith the published literature on other fern genera. (Received November 28, 1986; Accepted April 6, 1987)  相似文献   

13.
Spores ofAdiantum capillus-veneris L. incubated at 25 C for 3 days in the dark were irradiated with continuous red light to induce spore germination and cell growth during following 7 days. A portion of spores were cultured for 8 days in the dark as non-irradiated control. Rhizoidal and protonemal cells were observed at 3 days after transferring spores to the irradiation conditions. During 10 days of the experimental period, changes in the contents of following cell constituents were investigated: total lipid, total soluble sugar, reducing sugar, insoluble glucan, organic acid, protein, soluble α-amino N, and major free amino acids. A large part of nutrient reserves of spores was found to be lipid, whose content decreased markedly as spores germinated. Soluble and insoluble carbohydrates also provided carbon and energy sources during imbibition and germination. Two main reserve proteins were detected by SDS-polyacrylamide gel electrophoresis. These proteins disappeared mostly during germination. Major free amino acids could be assorted into three groups by their patterns of fluctuation during the germination.  相似文献   

14.
The stl1 and stl2 mutations confer low and high levels of NaCl tolerance to gametophytes of the fern Ceratopteris richardii, respectively. As an initial characterization of these mutations, the levels of various organic solutes, tissue ion content and water relations were examined in the wild-type and mutant strains in the absence and presence of 60 mol m-3 NaCl stress (a level which results in a 20, 15 and 0% reduction in gametophyte growth in the wild-type, stl1 mutant and stl2 mutant, respectively). All strains exhibited major changes in organic and inorganic solute levels and water relations in response to 60 mol m-3 NaCl stress. Differences in organic solute levels and water relations between the wild-type and mutant strains in the absence and in response to 60 mol m-3 NaCl stress were minimal. Analysis of tissue ion content showed that stl1 was associated with a slight reduction in Na+ accumulation during 60 mol m-3 NaCl stress. stl2 was associated with (1) higher constitutive levels of K+ and (2) continued selective accumulation of K+ and reduced accumulation of Na+ during 60 mol m-3 NaCl stress. A K+/Na+ ratio close to 1 was observed in the wild-type during 60 mol m-3 NaCl stress, while higher ratios were detected in stl1 and stl2 (1·7 and 4·0, respectively). The findings of this study suggest that the tolerance imparted by stl1 and stl2 is associated with altered ion accumulation during NaCl stress, rather than an enhanced ability to accumulate organic solutes to be used for osmotic adjustment of the cytoplasm.  相似文献   

15.
The homosporous fern Ceratopteris richardii exhibits a homorhizic root system where roots originate from the shoot system. These shoot-borne roots form lateral roots (LRs) that arise from the endodermis adjacent to the xylem poles, which is in contrast to flowering plants where LR formation arises from cell division in the pericycle. A detailed study of the fifth shoot-borne root showed that one lateral root mother cell (LRMC) develops in each two out of three successive merophytes. As a result, LRs emerge alternately in two ranks from opposite positions on a parent root. From LRMC initiation to LR emergence, three developmental stages were identified based on anatomical criteria. The addition of auxins (either indole-3-acetic acid or indole-3-butyric acid) to the growth media did not induce additional LR formation, but exogenous applications of both auxins inhibited parent root growth rate. Application of the polar auxin-transport inhibitor N-(1-naphthyl)phthalamic acid (NPA) also inhibited parent root growth without changing the LR initiation pattern. The results suggest that LR formation does not depend on root growth rate per se. The result that exogenous auxins do not promote LR formation in C. richardii is similar to reports for certain species of flowering plants, in which there is an acropetal LR population and the formation of the LRs is insensitive to the application of auxins. It also may indicate that different mechanisms control LR development in non-seed vascular plants compared with angiosperms, taking into consideration the long and independent evolutionary history of the two groups.  相似文献   

16.
17.
18.
This comprehensive study of early embryology in Ceratopteris richardii combines light microscopy with the first ultrastructural evaluation of any pteridophyte embryo. Emphasis is placed on ontogeny of the foot and placental transfer cells. The embryology of C. richardii shares many similarities with that of other polypodiacious ferns while exhibiting distinctive division patterns. Formative embryonic stages have been reconstructed into three-dimensional models for ease of interpretation. The zygote divides perpendicular to the gametophyte plane and anterioposterior axis. This division establishes a prone embryological habit that maximizes rapid independent establishment of a leaf-root axis in a cordate gametophyte. After the formation of a globular eight-celled stage, initials of the first leaf, and root and shoot apical meristems are defined early by discrete formative divisions. Concomitantly, the foot expands and differentiates to transport nutrients from the gametophyte for the developing embryonic organs. Transfer cell wall ingrowth deposition begins in the gametophyte placental cells before the adjacent sporophyte cells just after the eight-celled stage. These observations provide an anatomical framework for future comparative developmental genetic studies of embryogenesis in free-sporing plants.  相似文献   

19.
Plants, in general, have a high proportion of their CpG and CpNpG nucleotide motifs modified with 5-methylcytosine (5mC). Developmental changes in the proportion of 5mC are evident in mammals, particularly during gametogenesis and embryogenesis, but little information is available from flowering plants due to the intimate association of gametes with sporophytic tissues. In ferns, sperm are uninucleate and free-swimming and thus are easily isolated. We have examined 5mC in DNA isolated from fern sperm and other tissues with methylation-sensitive and -insensitive restriction enzyme isoschizomers, Southern blots probed with chloroplast and nuclear ribosomal RNA genes and end-labeled restriction fragments. We conclude that fern sperm DNA is methylated to a similar or greater degree than DNA isolated from either sporophytes or gametophytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号