首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Bacteria of Shigella spp. are the causative agents of shigellosis. The virulence traits of these pathogens include their ability to enter into epithelial cells and induce apoptosis in macrophages. Expression of these functions requires the Mxi-Spa type III secretion apparatus and the secreted IpaA-D proteins, all of which are encoded by a virulence plasmid. In wild-type strains, the activity of the secretion apparatus is tightly regulated and induced upon contact of bacteria with epithelial cells. To investigate the repertoire of proteins secreted by Shigella flexneri in conditions of active secretion, we determined the N-terminal sequence of 14 proteins that are secreted by a mutant in which secretion was deregulated. Sequencing of the virulence plasmid pWR100 of the S. flexneri strain M90T (serotype 5) has allowed us to identify the genes encoding these secreted proteins and suggests that approximately 25 proteins are secreted by the type III secretion apparatus. Analysis of the G+C content and the relative positions of genes and open reading frames carried by the plasmid, together with information concerning the localization and function of encoded proteins, suggests that pWR100 contains blocks of genes of various origins, some of which were initially carried by four different plasmids.  相似文献   

6.
Shigella possess 220 kb plasmid, and the major virulence determinants, called effectors, and the type III secretion system (TTSS) are exclusively encoded by the plasmid. The genome sequences of S. flexneri strains indicate that several ipaH family genes are located on both the plasmid and the chromosome, but whether their chromosomal IpaH cognates can be secreted from Shigella remains unknown. Here we report that S. flexneri strain, YSH6000 encodes seven ipaH cognate genes on the chromosome and that the IpaH proteins are secreted via the TTSS. The secretion kinetics of IpaH proteins by bacteria, however, showed delay compared with those of IpaB, IpaC and IpaD. Expression of the each mRNA of ipaH in Shigella was increased after bacterial entry into epithelial cells, and the IpaH proteins were secreted by intracellular bacteria. Although individual chromosomal ipaH deletion mutants showed no appreciable changes in the pathogenesis in a mouse pulmonary infection model, the DeltaipaH-null mutant, whose chromosome lacks all ipaH genes, was attenuated to mice lethality. Indeed, the histological examination for mouse lungs infected with the DeltaipaH-null showed a greater inflammatory response than induced by wild-type Shigella, suggesting that the chromosomal IpaH proteins act synergistically as effectors to modulate the host inflammatory responses.  相似文献   

7.
8.
Invasion of epithelial cells by Shigella flexneri involves entry and intercellular dissemination. Entry of bacteria into non-phagocytic cells requires the IpaA-D proteins that are secreted by the Mxi-Spa type III secretion machinery. Type III secretion systems are found in several Gram-negative pathogens and serve to inject bacterial effector proteins directly into the cytoplasm of host cells. In this study, we have analysed the IpgD protein of S. flexneri, the gene of which is located on the virulence plasmid at the 5' end of the mxi-spa locus. We have shown that IpgD (i) is stored in the bacterial cytoplasm in association with a specific chaperone, IpgE; (ii) is secreted by the Mxi-Spa type III secretion system in amounts similar to those of the IpaA-D proteins; (iii) is associated with IpaA in the extracellular medium; and (iv) is involved in the modulation of the host cell response after contact of the bacterium with epithelial cells. This suggests that IpgD is an effector that might be injected into host cells to manipulate cellular processes during infection.  相似文献   

9.
10.
11.
Entry of Shigella flexneri into epithelial cells involves secretory proteins, the lpa proteins, and their dedicated secretion apparatus, the Mxi—Spa translocon, which is encoded by the mxi and spa operons. We have characterized the mxiG gene that is located at the proximal part of the mxi operon. Inactivation of mxiG abolished lpa secretion, which indicates that MxiG is an essential component of the Mxi-Spa translocon. Immunoblotting analysis of membrane fractions suggests that the 42 kDa MxiG protein is associated with both the inner and outer membranes. Taking advantage of the complementation of the mxiG mutant by a plasmid carrying a wild-type copy of mxiG (which restored lpa secretion, entry into HeLa cells, and cell-to-cell spread) we mutagenized the mxiG gene carried by the complementing plasmid to replace the RGD motif of MxiG by RAD. This mutation ( mxiG *), which had no effect on the stability of the protein, did not affect lpa secretion in vitro or entry into HeLa cells, but impaired intercellular dissemination. Therefore, MxiG and possibly proteins secreted by the Mxi-Spa translocon are involved not only in entry but also in spread of shigella between epithelial cells.  相似文献   

12.
R Ménard  P Sansonetti    C Parsot 《The EMBO journal》1994,13(22):5293-5302
Shigella species are enteropathogens that invade epithelial cells of the human colon. Entry into epithelial cells is triggered by the IpaB, IpaC and IpaD proteins which are translocated into the medium through the specific Mxi-Spa machinery. In vitro, Shigella cells secrete only a small fraction of the Ipa proteins, the majority of which remains in the cytoplasm. We show here that upon interaction with cultured epithelial cells or in the presence of fetal bovine serum, S.flexneri release pre-synthesized Ipa molecules from the cytoplasm into the environment. Evidence is presented that IpaB and IpaD are essential for both blocking secretion through the Mxi-Spa translocon in the absence of a secretion-inducing signal and controlling secretion of the Ipa proteins in the presence of a signal. Subcellular localization and analysis of the molecular interactions of the Ipa proteins indicate that IpaB and IpaD associate transiently in the bacterial envelope. We propose that IpaB and IpaD, by interacting in the secretion apparatus, modulate secretion.  相似文献   

13.
Pathogenicity of many Gram-negative bacteria relies on a type III secretion (T3S) apparatus, which is used for delivery of bacterial effectors into the host cell cytoplasm allowing the bacteria to manipulate host cell cytoskeleton network as well as to interfere with intracellular signaling pathways. In this study, we investigated the potential of the Shigella flexneri T3SA as an in vivo delivery system for biologically active molecules such as cytokines. The anti-inflammatory cytokines IL-10 and IL-1 receptor antagonist (IL-1ra) were genetically fused to the first 30 or 60 residues of the Shigella T3S effector IpaH9.8 or to the first 50 residues of the Yersinia enterocolitica effector YopE and the recombinant fusion proteins were expressed in S. flexneri. YopE(50)-IL-10, IpaH(60)-IL-10, and IpaH(60)-IL-1ra were efficiently secreted via the T3S apparatus of Shigella. Moreover, these recombinant proteins did not impair the invasive ability of the bacteria in vitro. In a murine model, Shigella strains expressing YopE(50)-IL-10, IpaH(60)-IL-10, and IpaH(60)-IL-1ra induced a lower mortality in mice that was associated with reduced inflammation and a restricted localization of bacteria within the lung tissues as compared with wild-type Shigella. Moreover, the level of TNF-alpha and IL-1beta mRNA were reduced in the lungs following infection by IL-10- and IL-1ra-secreting Shigella, respectively. These findings demonstrate that the Shigella T3S apparatus can deliver biologically active cytokines in vivo, thus opening new avenues for the use of attenuated bacteria to deliver proteins for immunomodulation or gene therapy purposes.  相似文献   

14.
15.
Invasion of epithelial cells by Shigella flexneri involves entry and dissemination. The main effectors of entry, IpaB and IpaC, are also required for contact haemolytic activity and escape from the phagosome in infected macrophages. These proteins are stored in the cytoplasm in association with the chaperone IpgC, before their secretion by a type III secretion apparatus is activated by host cells. We used a His-tagged IpgC protein to purify IpgC-containing complexes and showed that only IpaB and IpaC are associated with IpgC. Plasmids expressing His6-IpgC either alone or together with IpaB or IpaC under the control of an IPTG-inducible lac promoter were introduced into ipgC , ipaB or ipaC mutants. Induction of expression of the recombinant plasmid-encoded proteins by IPTG allowed bacteria to enter epithelial cells, and the role of these proteins in dissemination was investigated by incubating infected cells in either the absence or the presence of IPTG. The size of plaques produced by recombinant strains on cell monolayers was regulated by IPTG, indicating that IpgC, IpaB and IpaC were each required for efficient dissemination. Electron microscopy analysis of infected cells indicated that these proteins were necessary for lysis of the membrane of the protrusions during cell-to-cell spread.  相似文献   

16.
The chaperone IpgC copurifies with the virulence regulator MxiE   总被引:1,自引:0,他引:1  
The expression of a subset of Shigella flexneri virulence genes is dependent upon a cytoplasmic chaperone, IpgC, and an activator from the AraC/XylS family, MxiE. In this paper, we report that the chaperone forms a specific and stable heteromer with MxiE.  相似文献   

17.
Many bacteria pathogenic for plants or animals, including Shigella spp., which is responsible for shigellosis in humans, use a type III secretion apparatus to inject effector proteins into host cells. Effectors alter cell signaling and host responses induced upon infection; however, their precise biochemical activities have been elucidated in very few cases. Utilizing Saccharomyces cerevisiae as a surrogate host, we show that the Shigella effector IpaH9.8 interrupts pheromone response signaling by promoting the proteasome-dependent destruction of the MAPKK Ste7. In vitro, IpaH9.8 displayed ubiquitin ligase activity toward ubiquitin and Ste7. Replacement of a Cys residue that is invariant among IpaH homologs of plant and animal pathogens abolished the ubiquitin ligase activity of IpaH9.8. We also present evidence that the IpaH homolog SspH1 from Salmonella enterica can ubiquitinate ubiquitin and PKN1, a previously identified SspH1 interaction partner. This study assigns a function for IpaH family members as E3 ubiquitin ligases.  相似文献   

18.
Oligonucleotide primers derived from the ipaH7.8 sequence have been used to determine the boundaries of DNA sequence homology among five ipaH genes on the invasion plasmid (pWR100) of Shigella flexneri 5, strain M9OT-W. The primary structure of IpaH4.5 has been established from DNA sequence analysis. The first 197 amino acids in IpaH7.8 were replaced in IpaH4.5 by a unique set of 251 amino acids, generating two related proteins with variable and conserved sequences. The amino-terminal region of IpaH4.5 displayed an internal repeat structure, also seen in IpaH7.8, characteristic of members of the leucine-rich glycoprotein (LRG) family. The DNA sequences of ipaH2.5 and ipaH1.4 indicate that these genes are truncated versions of ipaH7.8. Western blot analysis of a lambda gt11 ipaH recombinant (W7) subclone demonstrated that the antigenicity of IpaH7.8 resides outside the leucine-rich repetitive region.  相似文献   

19.
The type III secretion (TTS) system of Gram-negative pathogenic bacteria is composed of proteins that assemble into the TTS machinery, proteins that are secreted by this machinery and specific chaperones that are required for storage and sometimes secretion of these proteins. Many sequential protein interactions are involved in the TTS pathway to deliver effector proteins to host cells. We used the yeast two-hybrid system to investigate the interaction partners of the Shigella flexneri effectors and chaperones. Libraries of preys containing random fusions with fragments of the TTS proteins were screened using effectors and chaperones as baits. Interactions between the effectors IpaB and IpaC and their chaperone IpgC were detected by this method, and interaction domains were identified. Using a His-tagged IpgC protein to co-purify truncated IpaB and IpaC proteins, we showed that the chaperone-binding domain was unique and located in the N-terminus of these proteins. This domain was not required for the secretion of recombinant proteins but was involved in the stability of IpaC and instability of IpaB. Homotypic interactions were identified with the baits IpaA, IpaB and IpaC. Interactions between effectors and components of the TTS machinery were also selected that might give insights into regulation of the TTS process.  相似文献   

20.
Shigella flexneri uses its type III secretion system (T3SS) to promote invasion of human intestinal epithelial cells as the first step in causing shigellosis, a life-threatening form of dysentery. The Shigella type III secretion apparatus (T3SA) consists of a basal body that spans the bacterial envelope and an exposed needle that injects effector proteins into target cells. The nascent Shigella T3SA needle is topped with a pentamer of the needle tip protein invasion plasmid antigen D (IpaD). Bile salts trigger recruitment of the first hydrophobic translocator protein, IpaB, to the tip complex where it senses contact with a host membrane. In the bacterial cytoplasm, IpaB exists in a complex with its chaperone IpgC. Several structures of IpgC have been determined, and we recently reported the 2.1 ? crystal structure of the N-terminal domain (IpaB(74.224)) of IpaB. Like IpgC, the IpaB N-terminal domain exists as a homodimer in solution. We now report that when the two are mixed, these homodimers dissociate and form heterodimers having a nanomolar dissociation constant. This is consistent with the equivalent complexes copurified after they had been co-expressed in Escherichia coli. Fluorescence data presented here also indicate that the N-terminal domain of IpaB possesses two regions that appear to contribute additively to chaperone binding. It is also likely that the N-terminus of IpaB adopts an alternative conformation as a result of chaperone binding. The importance of these findings within the functional context of these proteins is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号