首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHOLINE ACETYLTRANSFERASE CONTENT IN DISCRETE REGIONS OF THE RAT BRAIN STEM   总被引:10,自引:5,他引:5  
—Choline acetyltransferase (ChAc) content of 50 separate rat brain stem nuclei and cerebellum removed by microdissection was determined using a sensitive radiometric assay. The distribution of ChAc activity is uneven, with extremely high levels in the cranial motor nuclei and the nucleus salivatorius. Low ChAc concentrations were observed in the cranial sensory nuclei, the nuclei of the reticular formation, the raphe nuclei and the nuclei of the acoustic system. The lowest ChAc levels were measured in the cerebellum. Comparison of the distribution of ChAc with histochemical localization of acetylcholinesterase revealed generally good agreement, and notable exceptions are discussed.  相似文献   

2.
3.
Both spermidine and spermine are acetylated in chicken brain and retina. From spermidine, more N1-acetylspermidine than N8-acetylspermidine is formed by both the brain and the retinal cytosol. Km for spermidine is similar with the enzyme preparation of the two tissues, but that for spermine is lower with the retinal preparation. Both tissues contain an activity able to reduce spermidine acetyltransferase activity. Both alkaline phosphatase and cAMP-dependent protein kinase (catalytic subunit) are able to inactivate the spermidine acetyltransferase activity of both tissues. Spermidine acetyltransferase activity and polyamine levels have been measured in both brain and retina during embryonic life. Only in the last part of the development can enzyme activity be correlated with the retina spermidine and spermine concentration.  相似文献   

4.
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific marker for identifying cholinergic neurons in the central and peripheral nervous systems. The present article reviews immunohistochemical and in situ hybridization studies on the distribution of neurons expressing ChAT in the human central nervous system. Neurons with both immunoreactivity and in situ hybridization signals of ChAT are observed in the basal forebrain (diagonal band of Broca and nucleus basalis of Meynert), striatum (caudate nucleus, putamen and nucleus accumbens), cerebral cortex, mesopontine tegmental nuclei (pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parabigeminal nucleus), cranial motor nuclei and spinal motor neurons. The cerebral cortex displays regional and laminal differences in the distribution of neurons with ChAT. The medial septal nucleus and medial habenular nucleus contain immunoreactive neurons for ChAT, which are devoid of ChAT mRNA signals. This is probably because there is a small number of cholinergic neurons with a low level of ChAT gene expression in these nuclei of human. Possible connections and speculated functions of these neurons are briefly summarized.  相似文献   

5.
The quantitative histochemical distribution of acetylcholinesterase and choline acetyltransferase activity has been measured in individual hypothalamic nuclei and median eminence, as well as in entire hypothalamic sections by a mapping technique. There was an 18-fold range of nuclear choline acetyltransferase activity with highest activities in the lateral preoptic nucleus and median eminence. There was a nine-fold range of nuclear acetylcholinesterase activity with highest activities in the lateral preoptic and magnocellular nuclei and lowest activity in the median eminence. The substantial gradients of choline acetyltransferase activity found in the hypothalamus indicate the importance of using a technique that provides an objective, permanent record of contiguous sample locations thereby allowing detailed analysis of tissue areas using, but not dependent on, anatomical boundaries.  相似文献   

6.
Abstract— Acetylcholine, its precursor (choline), and the enzymes of its biosynthesis and degradation (choline acetyltransferase and acetylcholinesterase, respectively) have been studied and quantified in extracts of several regions of the nervous system of the lobster and in single, isolated axons of identified efferent excitatory, efferent inhibitory and afferent sensory neurons. The choline acetyltransferase is a soluble enzyme similar to that from other species. The predominant acetylcholine-hydrolysing enzyme is largely membrane-bound and has been characterized as a specific acetylcholinesterase. A single peak of acetylcholinesterase activity can be detected upon velocity sedimentation analysis of Triton X-100-treated extracts of all regions of the nervous system. Choline acetyltransferase distribution parallels that of sensory neural elements, and its specific activity shows nearly a 500-fold difference from the richest to the poorest neural source. Acetylcholinesterase levels span only a 23-fold range, and activity is found in all neural regions, including those free of known sensory components. A radiochemical microassay for choline and acetylcholine in the range of 20–2000 pmol is described in detail. All 3 types of axons contain comparable levels of choline ( ca. 2 pmol/μg protein), but acetylcholine is asymmetrically distributed. Efferent axons contain no detectable acetylcholine, while sensory axons from abdominal muscle receptor organs have an average of 1·9 pmol/μg protein. Choline acetyltransferase is similarly distributed; sensory axons show at least 500-fold greater activity than efferent axons. Acetylcholinesterase is nearly uniformly distributed among the three types of fibres. These results are discussed in terms of a general view of transmitter accumulation in single neurons.  相似文献   

7.
MgATP substantially inhibited 1-alkyl-sn-glycero-3-phosphate (AGP) acetyltransferase found in neuronal nuclei. Other nucleotides and the ATP analogue AMP-PNP did not show a comparable inhibition. MgATP inhibition decreased in the presence of bovine serum albumin or the fatty acyl CoA synthetase inhibitor, Triacsin C. MgATP inhibition increased when nuclei were preincubated in 50 mM Tris-HCl (pH 7.4)/1 mM MgCl(2) at 37 degrees C, and preincubations elevated levels of nuclear free fatty acid. Exogenous free fatty acid, added to the acetylation incubations, increased the inhibition seen in the presence of MgATP. Oleoyl CoA, in the absence of MgATP, also inhibited AGP acetylation. These results suggested that MgATP supported the conversion of nuclear free fatty acids to fatty acyl CoA. Fatty acyl CoA may directly inhibit nuclear AGP acetyltransferase, but inhibition brought about by MgATP was competitive for the AGP substrate, suggesting an inhibitor close in structure to AGP. 1-Hexadecyl-2-arachidonoyl-sn-glycero-3-phosphate was identified as a competitive inhibitor for AGP in the acetylation reaction. Neuronal nuclei can convert AGP to 1-alkyl-2-acyl-sn-glycero-3-phosphate (AAcylGP), a reaction dependent upon MgATP and the presence of acetyl CoA or free CoA. This nuclear acylation was increased by free fatty acid addition and was seen using oleoyl CoA in the absence of MgATP. Nuclear AAcylGP formation was inhibited by bovine serum albumin and by Triacsin C. Thus, nuclear AGP acetyltransferase may be regulated by AGP acyltransferase activity and the availability of MgATP, a nucleotide that is rapidly lost during brain ischemia.  相似文献   

8.
Summary Two different monoclonal antibodies raised against choline acetyltransferase were used, together with preembedding immunocytochemical techniques, to visualize the possible cholinergic innervation of the supraoptic and paraventricular nuclei of the rat hypothalamus. Light microscopy confirmed the presence of a group of bipolar and multipolar immunoreactive neurones in the hypothalamus dorsolateral to the supraoptic nucleus as well as numerous immunopositive fibers. Electron microscopy showed that the immunopositive cell bodies contained the usual perikaryal organelles while most immunoreactive fibers appeared dendritic; immunonegative terminals made synaptic contact onto these profiles. Immunopositive terminals making synaptic contact onto dendritic profiles were also noted in this area. In contrast, light microscopy showed no immunoreactivity to choline acetyltransferase in the magnocellular nuclei themselves. Electron microscopy revealed some immunopositive profiles along the boundaries of both nuclei, along the optic chiasm adjacent to the supraoptic nucleus and in the ventral glial lamina but not within the nuclei proper. Surprisingly, these immunopositive profiles appeared dendritic and were often contacted by one or more immunonegative synapses. Our observations thus indicate that cell bodies and dendrites in the supraoptic and paraventricular nuclei are not directly innervated by cholinergic synapses. The functional significance of the putative cholinergic dendrites in close proximity to magnocellular neurones remains to be determined.  相似文献   

9.
Chromatin structure of D. melanogaster embryonic nuclei was studied at the stage of preblastoderm using the Miller method. Several levels of chromatin packing were detected after soft nuclei dispersion: individual or clustered compact spherical bodies 0.5-1 micron in diameter, nucleosomic fibers with different nucleosome density, DNA loops and fibers that contain few granules.  相似文献   

10.
Histone acetyltransferase activity of trout testis was studied both in intact nuclei, and in high salt nuclear extracts. With intact nuclei, the distribution of incorporated [14C]acetate in the various histones was similar to that observed in vivo; the arginine-rich histones H3 and H4 showed the highest specific activities, and lower amounts of label were detected in histones H2a and H2b. Histone H1 incorporated little or no label. Acetyltransferase activity could be detected in purified, sheared chromatin after the addition of MgCl2 or KCl, suggesting that the enzyme is bound to chromatin. Treatment of nuclei with 0.4 M NaCl caused the dissociation of acetyltransferase activity. Most of this solubilized activity failed to bind to DEAE Sephadex and behaved as a high molecular weight heterogeneous complex on Sephadex G-100, suggesting that the enzyme is present as an aggregate with other proteins in the extract. The pH optimum of this preparation was approximately 8.5, and the enzyme showed a preference for histones H3 and H4 as substrates.  相似文献   

11.
Morphological and cytophotometric investigations have been performed on giant cells of the rabbit trophoblast to reveal a mechanism of nuclei polyploidization and define the level of polyploidy. The character of endomitotic chromosomes is found to differ and depend largely on the degree of nuclei polyploidy. Small chromosomes were found in nuclei with low levels of polyploidy. For highly polyploid nuclei, two stages are distinguished. In the first case condensed chromosomes join into bundles resembling Riesenchromosomen in plants, whereas in the second, decondensed chromosomal threads separate and disperse in the karyoplasm. The splitting does not involve nuclei-forming chromosomes in the region of the nucleolar organiser. The degree of polyploidy was determined on the 15th day of development. It was found that giant cell nuclei contain DNA in amounts corresponding to 32-512 chromosomal sets. Most of the nuclei have levels of 128c and 256c. Highly-polyploid nuclei disintegrate into small nuclei with the degree of polyploidy varying from 1c to 32c. Di- tri- and tetraploid nuclei predominate.  相似文献   

12.
Two forms of porcine histone acetyltransferase (types I and II) have been purified to apparent homogeneity from liver nuclei. Both activities are extracted from nuclei by 0.5 M NaCl and display a native Mr of 110,000 as determined by gel filtration. Saline enzyme extracts were subject to ammonium sulfate precipitation and sequential chromatography on Q-Sepharose, Sephacryl S-200, hydroxylapatite, and Mono Q supports. The histone acetyltransferase type I fraction contains three polypeptide chains with apparent Mr values of 105,000, 62,000, and 45,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cyanogen bromide peptide mapping and immunoblotting suggest that the Mr 62,000 and 45,000 polypeptides are derived by cleavage of the Mr 105,000 polypeptide. Histone acetyltransferase type II contains two different subunits with apparent Mr values of 50,000 and 40,000, respectively. The amino acid composition, heat inactivation profiles, and Michaelis constants with respect to both acetyl coenzyme A and histones were indistinguishable for types I and II. However, affinity-purified polyclonal antibodies to both forms of the enzyme do not cross-react; cyanogen bromide-derived in situ cleavage digest patterns show few similarities; and the turnover number for type I is approximately 15-fold lower than that for type II. We estimate that there is one enzyme molecule for every 500 nucleosomes. The existence of two distinct forms of nuclear histone acetyltransferase in pig liver suggests that they may have separate functions in vivo.  相似文献   

13.
Colchicine injections in the supracommissural septum of the rat caused degeneration of several neurons in the nucleus triangularis septi and the nucleus septofimbrialis. The lesions resulted in significant decreases of choline acetyltransferase in the habenula (-34%) and in the nucleus interpeduncularis (-36%), thus demonstrating the existence of a major cholinergic projection to these nuclei from the supracommissural septum. A large fall in choline acetyltransferase was also noticed in the dorsal hippocampus as a consequence of colchicine damage to the fimbria-fornix fibers crossing the injected area.  相似文献   

14.
15.
We have studied the localization of neutral sphingomyelinase (N-SMase) in rat liver nuclei. The levels of neutral sphingomyelinase in regenerating liver nuclei were also assessed.We found that rat liver nuclei contain a sphingomyelinase having a pH optima of 7.2 and a kDa of 92. In intact nuclei, neutral sphingomyelinase was associated predominantly with the nuclear envelope. In regenerating/proliferating rat liver (during DNA synthesis), neutral sphingomyelinase was translocated from the nuclear envelope to the nuclear matrix. The levels of sphingomyelin in whole nuclei decreased in reverse proportion to an increase in the levels of neutral sphingomyelinase. By contrast, there was a corresponding increase in the levels of ceramide and sphingosine during cell regeneration/proliferation. Thus, endogenous nuclear neutral sphingomyelinase may play a role in the regulation of sphingomyelin levels and in relevant signal transduction reactions involving cell regeneration/proliferation. The potential significance of ceramide generation may be aimed at programmed cell death to allow the regeneration of liver mediated via target proteins such as, ceramide activated protein kinases/phospholipases or other unknown mechanisms.Abbreviations N-SMase neutral sphingomyelinase - A-SMase acid sphingomyelinase  相似文献   

16.
Berth's method was used to study the cytochemical activity of choline acetyltransferase in truncus cerebri neurons of 6-8 lunar month-old human fetuses. Three types on neurons were diagnosed in the nuclei of the truncus cerebri with regard to cholinacetyltransferase localization: (1) cholinergic cholinoceptive neurons; (2) cholinergic non-cholinoceptive neurons; (3) non-cholinergic cholinoceptive neurons. The distribution of the neurons in 27 nuclei of the truncus cerebri is described.  相似文献   

17.
—Mercuric chloride, silver acetate and cupric sulphate (0·1 mm ) completely inhibited purified choline acetyltransferase from bovine caudate nuclei. At the same concentration cadmium chloride and zinc acetate gave a 50 per cent inhibition. Potassium and sodium salts more than doubled the enzymatic activity while creatinine hydrochloride more than tripled it. Guanidine hydrochloride was less effective than creatinine hydrochloride but more effective than KCl and NaCl. Sodium chloride and creatinine hydrochloride had a synergistic effect on the enzyme. When ammonium sulphate was used to fractionate the choline acetyltransferase that had been extracted from bovine caudate nuclei, the enzyme aggregated into different molecular sizes as determined by exclusion chromatography on Bio-gel A-1·5 m. The molecular weight of the largest aggregate was at least 106 daltons. The initial tissue extract contained only one molecular species of ChAc as did a partially purified preparation in which ammonium sulphate was not used in the purification.  相似文献   

18.
Rat liver chromatin prepared from purified nuclei catalyzed the acetylation of histones in nucleosomes at the same level as that of nuclei. The activity of histone acetyltransferase in chromatin was destroyed by heat treatment at 65 degrees C for 5 min. Histones in exogenously added nucleosomes also served as substrate for the enzyme. The sites of acetylation in the nucleosomes appeared to be in the trypsin-digestable N-terminal regions of histones H4, H3, and H2A, as has been reported in an in vivo system.  相似文献   

19.
Neuronal activation of brain vagal-regulatory nuclei and gastric/duodenal enteric plexuses in response to insulin (2 U/kg, 2 h) hypoglycemia was studied in rats. Insulin hypoglycemia significantly induced Fos expression in the paraventricular nucleus of the hypothalamus, locus coeruleus, dorsal motor nucleus of the vagus (DMN), and nucleus tractus solitarii (NTS), as well as in the gastric/duodenal myenteric/submucosal plexuses. A substantial number of insulin hypoglycemia-activated DMN and NTS neurons were choline acetyltransferase and tyrosine hydroxylase positive, respectively, whereas the activated enteric neurons included NADPH- and vasoactive intestinal peptide neurons. The numbers of Fos-positive cells in each above-named brain nucleus or in the gastric/duodenal myenteric plexus of insulin-treated rats were negatively correlated with serum glucose levels and significantly increased when glucose levels were lower than 80 mg/dl. Acute bilateral cervical vagotomy did not influence insulin hypoglycemia-induced Fos induction in the brain vagal-regulatory nuclei but completely and partially prevented this response in the gastric and duodenal enteric plexuses, respectively. These results revealed that brain-gut neurons regulating vagal outflow to the stomach/duodenum are sensitively responsive to insulin hypoglycemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号