首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigation into the effect of the reducing sugar of dextran on formation and stability of dextran-coated ultrasmall superparamagnetic iron oxides (USPIO) has demonstrated that reduction of the terminal reducing sugar can have a significant effect on particle size, coating stability, and magnetic properties. Four aspects of polysaccharide-coated USPIO particle synthesis were investigated: (i) the effect reduction of the terminal polysaccharide sugar has upon polysaccharide usage, particle size, stability, and magnetic susceptibility; (ii) the effect an exogenous reducing sugar can have upon particle synthesis; (iii) the effect the molecular weight of the reduced polysaccharide has on particle synthesis; and (iv) the effectiveness of reduced and native dextrans in stabilizing a preformed magnetic sol. For low molecular weight dextrans (MW 20,000 x 10(-6) cgs). Similar results were obtained with a 12 kDa pullulan. The effect of polysaccharide molecular weight on particle size was studied, wherein higher molecular weight reduced dextrans produced larger particles. The effectiveness of the reduced and native dextrans in stabilizing a preformed magnetic sol was compared. Reduced dextrans were found to be superior for stabilizing the magnetic sol. The observed effects of reduction of the terminal sugar in dextran compared with the native dextran were modeled using the Langmuir adsorption isotherm. A good fit of experimental data with this model was found.  相似文献   

2.

Background  

Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA.  相似文献   

3.

Introduction

Magnetic resonance imaging (MRI) has been shown to be superior to radiography (XR) for assessing synovitis, osteitis, and bone erosion in rheumatoid arthritis (RA), particularly in clinical trials. However, relatively little has been reported on the ability of MRI to evaluate articular cartilage loss, or joint-space narrowing (JSN), in the hands and wrists. In a previous study, we adapted the nine-point Genant-modified Sharp XR-JSN score for use with MRI (MRI-JSN). In this study, we compare MRI-JSN with XR-JSN by using images from two multicenter clinical trials.

Methods

Baseline XR and 1.5-Tesla MR images of one hand and wrist from each of 47 subjects with RA enrolled in one of two multicenter clinical trials were evaluated by using the XR-JSN and MRI-JSN methods by a single radiologist experienced in the two methods. Radiographs and MR images were read independently on different occasions.

Results

In total, 575 of 611 joints were compared (one metacarpophalangeal joint of the thumb and 35 proximal interphalangeal joints were outside the MRI field of view and could not be assessed). The 22 (47%) subjects showed JSN with both XR and MRI, and 25 (53%) subjects showed no JSN with either method. No subject showed JSN with only one or the other method. MRI showed high agreement with XR (intraclass correlation coefficient = 0.83). Sensitivity of MRI for JSN, by using XR as the gold standard, was 0.94; specificity was 0.91; accuracy was 0.91; positive predictive value was 0.64; and negative predictive value was 0.99.

Conclusions

This validation exercise suggests that MRI JSN scoring may offer a viable alternative to XR JSN scoring in multicenter clinical trials of RA. However, the relative longitudinal sensitivity of MRI to change and the ability to discriminate therapeutic effect on JSN were not evaluated in this study.  相似文献   

4.
5.
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.KEY WORDS: Regenerative medicine, Stem cells, Magnetic resonance imaging, Paramagnetic contrast agents, CEST, Perfluorocarbon particles, Biosensor, Cell labeling, Cellular function  相似文献   

6.
Mouse models incorporating inducible Cre‐ERT2/LoxP recombination coupled with sensitive fluorescent reporter lines are being increasingly used to track cell lineages in vivo. In this study we use two inducible reporter strains, Ai9iCol2a1 (Ai9 × Col2a1‐creERT2) to track contribution of chondrogenic progenitors during bone regeneration in a closed fracture model and Ai9iUBC (Ai9 × UBC–creERT2) to examine methods for inducing localized recombination. By comparing with Ai9 littermate controls as well as inducible reporter mice not dosed with tamoxifen, we revealed significant leakiness of the CreERT2 system, particularly in the bone marrow of both lines. These studies highlight the challenges associated with highly sensitive reporters that may be activated without induction in tissues where the CreERT2 fusion is expressed. Examination of the growth plate in the Ai9iCol2a1 strain showed cells of the osteochondral lineage (cell co‐staining with chondrocyte and osteoblast markers) labeled with the tdTom reporter. However, no such labeling was noted in healing fractures of Ai9iCol2a1 mice. Attempts to label a single limb using intramuscular injection of 4‐hydroxytamoxifen in the Ai9iUBC strain resulted in complete labeling of the entire animal, comparable to intraperitoneal injection. While a challenge to interpret, these data are nonetheless informative regarding the limitations of these inducible reporter models, and justify caution and expansive controls in future studies using such models.  相似文献   

7.
The application of tissue-engineered cartilage in a clinical setting requires a noninvasive method to assess the biophysical and biochemical properties of the engineered cartilage. Since articular cartilage is composed of 70-80% water and has dense extracellular matrixes (ECM), it is considered that the condition of the water molecules in the tissue is correlated with its biomechanical property. Therefore, magnetic resonance imaging (MRI) represents a potential approach to assess the biophysical property of the engineered cartilage. In this study, we test the hypothesis that quantitative MRI can be used as a noninvasive assessment method to assess the biophysical property of the engineered cartilage. To reconstruct a model of cartilaginous tissue, chondrocytes harvested from the humeral head of calves were embedded in an agarose gel and cultured in vitro up to 4 weeks. Equilibrium Young's moduli were determined from the stress relaxation tests. After mechanical testing, MRI-derived parameters (longitudinal relaxation time T1, transverse relaxation time T2, and water self-diffusion coefficient D) were measured. The equilibrium Young's modulus of the engineered cartilage showed a tendency to increase with an increase in the culture time, whereas T1 and D decreased. Based on a regression analysis, T1 and D showed a strong correlation with the equilibrium Young's modulus. The results showed that T1 and D values derived from the MRI measurements could be used to noninvasively monitor the biophysical properties of the engineered cartilage.  相似文献   

8.
Background aimsHuman mesenchymal stem cells (hMSCs) have gained interest for treatment of stroke injury. Using in vitro culture, the purpose of this study was to investigate the long-term detectability of hMSCs by magnetic resonance imaging (MRI) after transfection with a superparamagnetic iron oxide (SPIO) and evaluate the effects of SPIO on cellular activity, particularly under an ischemic environment.MethodshMSCs were exposed to low doses of SPIOs. After a short incubation period, cells were cultured for additional 1, 7 and 14 d to evaluate proliferation, colony formation and multilinear potential. Labeled cells were imaged and evaluated in agarose to quantify R2 and R21 contrast at each time point. Cells were placed in a low-oxygen, low-serum environment and tested for cytotoxicity. In addition, labeled cells were transplanted into an ischemic stroke model and evaluated with ex vivo MRI and histology.ResultsCellular events such as proliferation and differentiation were not affected at any of the exposures tested when cultured for 14 d. The low iron exposure and short incubation time are sufficient for detectability with MRI. However, the higher iron dosage results in higher calcification and cytotoxicity under in vitro ischemic conditions. Transplantation of the hMSCs labeled with an initial exposure of 22.4 μg of Fe showed excellent retention of contrast in stroke-induced rats.ConclusionsAlthough SPIO labeling is stable for long-term MRI detection and has limited effects on the multilineage potential of hMSCs, high-dose SPIO labeling may affect hMSC survival under serum and oxygen withdrawal.  相似文献   

9.
An automated technique for the identification, tracking and analysis of biological cells is presented. It is based on the use of nanoparticles, enclosed within intra-cellular vesicles, to produce clusters of discrete, point-like fluorescent, light sources within the cells. Computational analysis of these light ensembles in successive time frames of a movie sequence, using k-means clustering and particle tracking algorithms, provides robust and automated discrimination of live cells and their motion and a quantitative measure of their proliferation. This approach is a cytometric version of the moving light display technique which is widely used for analyzing the biological motion of humans and animals. We use the endocytosis of CdTe/ZnS, core-shell quantum dots to produce the light displays within an A549, epithelial, lung cancer cell line, using time-lapse imaging with frame acquisition every 5 minutes over a 40 hour time period. The nanoparticle moving light displays provide simultaneous collection of cell motility data, resolution of mitotic traversal dynamics and identification of familial relationships allowing construction of multi-parameter lineage trees.  相似文献   

10.
11.

Background

Targeted superparamagnetic iron oxide (SPIO) nanoparticles have emerged as a promising biomarker detection tool for molecular magnetic resonance (MR) image diagnosis. To identify patients who could benefit from Epidermal growth factor receptor (EGFR)-targeted therapies, we introduce lipid-encapsulated SPIO nanoparticles and hypothesized that anti-EGFR antibody cetuximab conjugated of such nanoparticles can be used to identify EGFR-positive glioblastomas in non-invasive T2 MR image assays. The newly introduced lipid-coated SPIOs, which imitate biological cell surface and thus inherited innate nonfouling property, were utilized to reduce nonspecific binding to off-targeted cells and prevent agglomeration that commonly occurs in nanoparticles.

Results

The synthesized targeted EGFR-antibody-conjugated SPIO (EGFR-SPIO) nanoparticles were characterized using dynamic light scattering, zeta potential assays, gel electrophoresis mobility shift assays, transmission electron microscopy (TEM) images, and cell line affinity assays, and the results showed that the conjugation was successful. The targeting efficiency of the synthesized EGFR-SPIO nanoparticles was confirmed through Prussian blue staining and TEM images by using glioblastoma cell lines with high or low EGFR expression levels. The EGFR-SPIO nanoparticles preferentially targeted U-251 cells, which have high EGFR expression, and were internalized by cells in a prolonged incubation condition. Moreover, the T2 MR relaxation time of EGFR-SPIO nanoparticles could be used for successfully identifying glioblastoma cells with elevated EGFR expression in vitro and distinguishing U-251 cells from U-87MG cells, which have low EFGR expression.

Conclusion

These findings reveal that the lipid-encapsulated EGFR-SPIO nanoparticles can specifically target cells with elevated EGFR expression in the three tested human glioblastoma cell lines. The results of this study can be used for noninvasive molecular MR image diagnosis in the future.
  相似文献   

12.

Introduction

Rheumatoid arthritis (RA) is a chronic disease causing recurring inflammatory joint attacks. These attacks are characterized by macrophage infiltration contributing to joint destruction. Studies have shown that RA treatment efficacy is correlated to synovial macrophage number. The aim of this study was to experimentally validate the use of in vivo superparamagnetic iron oxide nanoparticle (SPION) labeled macrophages to evaluate RA treatment by MRI.

Methods

The evolution of macrophages was monitored with and without dexamethasone (Dexa) treatment in rats. Two doses of 3 and 1 mg/kg Dexa were administered two and five days following induction of antigen induced arthritis. SPIONs (7 mg Fe/rat) were injected intravenously and the knees were imaged in vivo on days 6, 10 and 13. The MR images were scored for three parameters: SPION signal intensity, SPION distribution pattern and synovial oedema. Using 3D semi-automated software, the MR SPION signal was quantified. The efficacy of SPIONs and gadolinium chelate (Gd), an MR contrast agent, in illustrating treatment effects were compared. Those results were confirmed through histological measurements of number and area of macrophages and nanoparticle clusters using CD68 immunostaining and Prussian blue staining respectively.

Results

Results show that the pattern and the intensity of SPION-labeled macrophages on MRI were altered by Dexa treatment. While the Dexa group had a uniform elliptical line surrounding an oedema pocket, the untreated group showed a diffused SPION distribution on day 6 post-induction. Dexa reduced the intensity of SPION signal 50-60% on days 10 and 13 compared to controls (P = 0.00008 and 0.002 respectively). Similar results were found when the signal was measured by the 3D tool. On day 13, the persisting low grade arthritis progression could not be demonstrated by Gd. Analysis of knee samples by Prussian blue and CD68 immunostaining confirmed in vivo SPION uptake by macrophages. Furthermore, CD68 immunostaining revealed that Dexa treatment significantly decreased the area and number of synovial macrophages. Prussian blue quantification corresponded to the macrophage measurements and both were in agreement with the MRI findings.

Conclusions

We have demonstrated the feasibility of MRI tracking of in vivo SPION-labeled macrophages to assess RA treatment effects.  相似文献   

13.
We designed a new culture method for neutrophilic iron‐oxidizing bacteria using liquid medium (i) to study the formation and mineralogical characteristics of biogenic iron oxides (BIOS) and (ii) to apply BIOS to various scientific and engineering applications. An iron‐oxidizing bacterium, Mariprofundus ferrooxydans PV‐1T (ATCC, BAA–1020), was cultured using a set of diffusion chambers to prepare a broad anoxic–oxic interface, upon which BIOS formation is typically observed in natural environments. Iron oxide precipitates were generated in parallel with bacterial growth. A scanning electron microscopy analysis indicated that the morphological features of the iron oxide precipitates in the medium (in vitro BIOS) were similar to those of BIOS collected from natural deep‐sea hydrothermal environments in the Northwest Eifuku Seamount field in the northern Mariana Arc (in situ BIOS). Further chemical speciation of both the in vitro and in situ BIOS was examined with X‐ray absorption fine structure (XAFS). A bulk XAFS analysis showed that the minerals in both BIOS were mainly ferrihydrite and oligomeric stages of amorphous iron oxyhydroxides with edge‐sharing octahedral linkages. The amount of in vitro BIOS produced with the diffusion‐chamber method was greater than those produced previously with other culture methods, such as gel‐stabilized gradient and batch liquid culture methods. The larger yields of BIOS produced with the new culture method will allow us to clarify in the future the mineralization mechanisms during bacterial growth and to examine the physicochemical properties of BIOS, such as their adsorption to and coprecipitation with various elements and substances.  相似文献   

14.
目的:研究超顺磁性纳米铁颗粒(superparamagnetic ironoxide particles,SPIO)体外标记人脐带间充质干细胞(HuCMScs)及MRI成像示踪的可行性.方法:从人胎儿脐带中分离培养、扩增脐带间充质干细胞(HUCMSCs),分别采用0 μg/ml,25μg/ml,50μg/ml浓度的SPIO标记0.5×106,1×106,2×106和10×106 HUCMSCs.普鲁士蓝染色和透射电镜鉴定细胞内铁颗粒情况,并用3.0T MR/离体扫描T1WI,T2WI,GRE/300序列成像,测定细胞群信号.结果:不同数量的HUCMSCs与0 μg/ml,25 μg/ml,50 μg/ml浓度的SP10共同培养18小时,普鲁士蓝染色发现标记的细胞随标记浓度的升高染色程度逐渐加深.透射电镜检查显示细胞内含致密铁颗粒.离体MRI不同序列测定不同浓度SPIO标记相同数量的细胞群,GRE/30°和T2WI测定的各组之间均有统计学差别,501μg/ml与25μg/ml组分别与0μg/ml组之间有显著统计学差别(P<0.05);同一浓度SPIO标记人脐带间充质干细胞,信号强度与细胞数量有关(P<0.05).结论:SPIO可以标记人脐带间充质干细胞,应用MRI可以对其进行体外示踪和监测.  相似文献   

15.
夏星  杨建军 《生态学杂志》2019,30(1):348-358
铁氧化物在土壤中广泛赋存,因其比表面积大,对重金属具有很强的吸附固定能力,深刻影响着土壤重金属的形态转化过程.因此,研究土壤铁氧化物对重金属的固定机制,对于深入理解重金属在土壤系统中的环境化学行为以及评估污染土壤重金属生物有效性具有重要意义.然而,采用传统的吸附模型和化学提取法研究土壤铁氧化物固定重金属的机制具有明显的局限性,无法从分子水平上阐明其固定机制.同步辐射技术在环境土壤学的应用显著推进了在分子水平上认识土壤铁氧化物吸附重金属及其受典型环境因子影响的分子机制.本文主要从同步辐射技术的发展历程、模拟系统和实际土壤系统中铁氧化物在多种因素影响下对重金属固定的分子机制等方面进行了综述,同时对同步辐射技术的未来发展趋势及其在该研究领域的应用进行了展望.  相似文献   

16.
The ability to visualize cell infiltration in experimental auto-immune encephalomyelitis (EAE), a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI) scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA) imaging sequence and a superparamagnetic iron oxide (SPIO) contrast agent. An "active labeling" approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.  相似文献   

17.
Melanoma is responsible for the majority of deaths related to skin cancer. Worryingly, prognoses show an increasing number of melanoma cases each year worldwide. Radiotherapy, which is a cornerstone of cancer treatment, has proved to be useful but insufficient in melanoma management due to exceptionally high radioresistance of melanoma cells. This problem could be overcome by superparamagnetic iron oxide nanoparticles (SPIONs) used as heat mediators in magnetic hyperthermia, which not only enhance radiosensitivity, but also enable precise targeting by exploitation of their magnetic properties.  相似文献   

18.
Protein-based tissue engineering in bone and cartilage repair   总被引:9,自引:0,他引:9  
Bioactive proteins signal host or transplanted cells to form the desired tissue type. Matrix systems are utilized to locally deliver the proteins and to maintain effective protein concentrations. For some indications, a matrix is required to define the physical form of the regenerated tissue. Substantial progress has been made in bone tissue engineering in recent years, based on the results of controlled clinical studies using bone morphogenetic proteins. Ongoing research in this area centers on the design of additional delivery matrices to expand the clinical indications, using synthetic delivery systems that mimic biological qualities of the natural materials currently in use. Although a similar rationale exists for the regeneration of articular cartilage with bioactive factors, advancement in this area has not been as substantial.  相似文献   

19.
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.  相似文献   

20.
Summary A continuous-flow system is described which, by measuring fluorescence of the unicellular alga Chlorella, is capable of measuring concentrations of the triazine herbicide, simazine, as low as 60nM (approx 12g l-1) within 5 minutes. Further developments are suggested to achieve the desired detection limit of 0.5nM. The use of such an instrument in environmental analysis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号