首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND INFORMATION: Transmembrane water flow is aided by water-specific channel proteins, aquaporins. Plant genomes code for approx. 35 expressed and functional aquaporin isoforms. Plant aquaporins fall into four different subfamilies of which the PIPs (plasma membrane intrinsic proteins) constitute the largest and evolutionarily most conserved subfamily with 13 members in Arabidopsis and maize. Furthermore, the PIPs can be divided into two phylogenetic groups, PIP1 and PIP2, of which the PIP1 isoforms are most tightly conserved, sharing >90% amino acid sequence identity. As the nomenclature implies, the majority of PIPs have been shown to be localized at the plasma membrane. Recently, two highly abundant plasma membrane aquaporins, SoPIP2;1 and SoPIP1;2, have been purified and structurally characterized. RESULTS: We report the cloning of a cDNA encoding SoPIP1;2 and show that there are at least five additional sequences homologous with SoPIP2;1 and SoPIP1;2 in the spinach genome. To understand their role in planta, we have investigated the cellular localization of the aquaporin homologues SoPIP1;2 and SoPIP1;1. By Western- and Northern-blot analyses and by immunocytochemical detection at the light and electron microscopic levels, we show that SoPIP1;2 is highly expressed in phloem sieve elements of leaves, roots and petioles and that SoPIP1;1 is present in stomatal guard cells. CONCLUSIONS: Localization of the two abundant aquaporin isoforms suggests roles for specific PIPs of the PIP1 subgroup in phloem loading, transport and unloading, and in stomatal movements.  相似文献   

2.
The aim of this study was to compare differences in water relations in the leaves of three broccoli cultivars and differential induction of the expression of PIP2 aquaporin isoforms under salt stress. Although broccoli is known to be moderately tolerant to salinity, scarce information exists about the involvement of leaf aquaporins in its adaptation to salinity. Thus, leaf water relations, leaf cell hydraulic conductivity (Lpc), gas exchange parameters and the PIP2 expression pattern were determined for short- (15 h) and long- (15 days) term NaCl treatments. In the long term, the lower half-time of water exchange in the cells of cv. Naxos, compared with Parthenon and Chronos, and its increased PIP2 abundance may have contributed to its Lpc maintenance. This unmodified Lpc in cv. Naxos under prolonged salinity may have diluted NaCl in the leaves, as suggested by lower Na+ concentrations in the leaf sap. By contrast, the increase in the half-time of water exchange and the lower PIP2 abundance in cvs. Chronos and Parthenon would have contributed to the reduced Lpc values. In cv. Parthenon, there were no differences between the ε values of control and salt-stressed plants; in consequence, cell turgor was enhanced. Also, the increases in BoPIP2;2 and BoPIP2;3 expression in cv. Chronos for the short-term NaCl treatment suggest that these isoforms are involved in osmotic regulation as downstream factors in this cultivar, in fact, in the short-term, Chronos had a significantly reduced osmotic potential and higher PIP2 isoforms expression.  相似文献   

3.
BACKGROUND AND AIMS: Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS: Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS: None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS: The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.  相似文献   

4.
5.
6.
Lian HL  Yu X  Lane D  Sun WN  Tang ZC  Su WA 《Cell research》2006,16(7):651-660
Aquaporins play a significant role in plant water relations. To further understand the aquaporin function in plants under water stress, the expression of a subgroup of aquaporins, plasma membrane intrinsic proteins (PIPs), was studied at both the protein and mRNA level in upland rice (Oryza sativa L. cv. Zhonghan 3) and lowland rice (Oryza sativa L. cv. Xiushui 63) when they were water stressed by treatment with 20% polyethylene glycol (PEG). Plants responded differently to 20% PEG treatment. Leaf water content of upland rice leaves was reduced rapidly. PIP protein level increased markedly in roots of both types, but only in leaves of upland rice after 10 h of PEG treatment. At the mRNA level, OsPIP1,2, OsPIP1,3, OsPIP2;1 and OsPIP2;5 in roots as well as OsPIP1,2 and OsPIP1;3 in leaves were significantly up-regulated in upland rice, whereas the corresponding genes remained unchanged or down-regulated in lowland rice. Meanwhile, we observed a significant increase in the endogenous abscisic acid (ABA) level in upland rice but not in lowland rice under water deficit. Treatment with 60 μM ABA enhanced the expression of OsPIP1;2, OsPIP2;5 and OsPIP2;6 in roots and OsPIP1;2, OsPIP2;4 and OsPIP2;6 in leaves of upland rice. The responsiveness of PIP genes to water stress and ABA were different, implying that the regulation of PIP genes involves both ABA-dependent and ABA-independent signaling oathways during water deficit.  相似文献   

7.
Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.  相似文献   

8.
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins.  相似文献   

9.
10.
11.
BACKGROUND AND AIMS The inner cortical cells (IC-cells) of legume root nodules have been previously shown to regulate the resistance to nodule O2 diffusion by a rapid contraction/expansion mechanism, which controls the volume of intercellular spaces and their occlusion by a liquid phase. The expression of aquaporins in IC-cells was also found to be involved in this nodule O2 diffusion mechanism. The aim of this study was to compare the expression of plasma membrane intrinsic proteins (PIP) aquaporin isoforms with tonoplast intrinsic protein (gamma-TIP) in both IC-cells and adjacent cell types. METHODS: Using immunogold labelling in ultra-thin sections of Glycine max nodules, the expression of two PIP isoforms was observed and compared with the gamma-TIP pattern. KEY RESULTS: The plasma membrane aquaporins PIP1 and PIP2 were expressed more in IC-cells and endodermis than in pericycle and infected cells. The tonoplast aquaporin gamma-TIP has shown a distribution pattern similar to that of the PIPs. CONCLUSIONS: PIPs and gamma-TIP aquaporins are highly expressed in both plasmalemma and tonoplast of nodule IC-cells. This distribution is consistent with the putative role of water fluxes associated with the regulation of nodule conductance to O2 diffusion and the subsequent ATP-dependent nitrogenase activity. In the endodermis, these aquaporins might also be involved in nutrient transport between the infected zone and vascular traces.  相似文献   

12.
13.
14.
Aquaporins mediate the movement of water across biomembranes. Arabidopsis thaliana contains 35 aquaporins that belong to four subfamilies (PIP, TIP, SIP, and NIP). We investigated their expression profiles immunochemically in suspension-cultured Arabidopsis thaliana cells during growth and in response to salt and osmotic stresses. Protein amounts of all aquaporins were much lower in cultured cells than in the plant tissues. This is consistent with the low water permeability of protoplasts from cultured cells. After treatment with NaCl, the protein amounts of PIP2;1, PIP2;2, and PIP2;3 in the cells increased several-fold, and those of TIP1;1 and TIP1;2, 15- and 3-fold respectively. PIP1 did not change under the stress. Cell death began after 19 d in culture, accompanied by marked accumulation of PIPs and TIPs and a gradual decrease in SIPs. Our results suggest the followings: (i) Accumulation of aquaporin isoforms was individually regulated at low levels in single cells. (ii) At least PIP2;2, PIP2;3, TIP1;1, and TIP1;2 are stress-responsive aquaporins in suspension cells. (iii) A sudden increment of several members of PIP2 and TIP1 subfamilies might be related to cell death.  相似文献   

15.
The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protoplasts was reduced 5- to 30-fold. The dAS plants had a 3-fold decrease in the root hydraulic conductivity expressed on a root dry mass basis, but a compensating 2.5-fold increase in the root to leaf dry mass ratio. The leaf hydraulic conductance expressed on a leaf area basis was similar for the dAS compared with the control plants. As a result, the hydraulic conductance of the whole plant was unchanged. Under sufficient and under water-deficient conditions, stomatal conductance, transpiration rate, plant hydraulic conductance, leaf water potential, osmotic pressure, and turgor pressure were similar for the dAS compared with the control plants. However, after 4 d of rewatering following 8 d of drying, the control plants recovered their hydraulic conductance and their transpiration rates faster than the dAS plants. Moreover, after rewatering, the leaf water potential was significantly higher for the control than for the dAS plants. From these results, we conclude that the PIPs play an important role in the recovery of Arabidopsis from the water-deficient condition.  相似文献   

16.
Aquaporins mediate the movement of water across biomembranes. Arabidopsis thaliana contains 35 aquaporins that belong to four subfamilies (PIP, TIP, SIP, and NIP). We investigated their expression profiles immunochemically in suspension-cultured Arabidopsis thaliana cells during growth and in response to salt and osmotic stresses. Protein amounts of all aquaporins were much lower in cultured cells than in the plant tissues. This is consistent with the low water permeability of protoplasts from cultured cells. After treatment with NaCl, the protein amounts of PIP2;1, PIP2;2, and PIP2;3 in the cells increased several-fold, and those of TIP1;1 and TIP1;2, 15- and 3-fold respectively. PIP1 did not change under the stress. Cell death began after 19 d in culture, accompanied by marked accumulation of PIPs and TIPs and a gradual decrease in SIPs. Our results suggest the followings: (i) Accumulation of aquaporin isoforms was individually regulated at low levels in single cells. (ii) At least PIP2;2, PIP2;3, TIP1;1, and TIP1;2 are stress-responsive aquaporins in suspension cells. (iii) A sudden increment of several members of PIP2 and TIP1 subfamilies might be related to cell death.  相似文献   

17.
Despite the high isoform multiplicity of aquaporins in plants, with 35 homologues including 13 plasma membrane intrinsic proteins (PIPs) in Arabidosis thaliana, the individual and integrated functions of aquaporins under various physiological conditions remain unclear. To better understand aquaporin functions in plants under various stress conditions, we examined transgenic Arabidopsis and tobacco plants that constitutively overexpress Arabidopsis PIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates and water transport were found between the transgenic and wild-type plants when grown under favorable growth conditions. The transgenic plants overexpressing PIP1;4 or PIP2;5 displayed a rapid water loss under dehydration stress, which resulted in retarded germination and seedling growth under drought stress. In contrast, the transgenic plants overexpressing PIP1;4 or PIP2;5 showed enhanced water flow and facilitated germination under cold stress. The expression of several PIPs was noticeably affected by the overexpression of PIP1;4 or PIP2;5 in Arabidopsis under dehydration stress, suggesting that the expression of one aquaporin isoform influences the expression levels of other aquaporins under stress conditions. Taken together, our results demonstrate that overexpression of an aquaporin affects the expression of endogenous aquaporin genes and thereby impacts on seed germination, seedling growth, and stress responses of the plants under various stress conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The nucleotide sequences of eight cDNAs encoding putative aquaporins obtained from a leaf Vitis hybrid Richter-110 cDNA library are reported. They encode proteins ranging from 249 to 287 amino acids with characteristic sequences that clearly include them within the MIP family. According to available database sequence homologies, they can be classified into four groups belonging to two subfamilies: PIP (PIP1 and PIP2) and TIP (gamma-TIP and delta-TIP). In order to elucidate the expression patterns of these putative aquaporins in the plant, specific probes were developed and tissue specific differential expression was tested by reverse Northern and compared with two reference genes (malic enzyme and glutamate dehydrogenase). Clearly, most of the putative aquaporins had higher expression in roots, whereas expression in shoot and leaves was generally weaker than the reference genes.  相似文献   

19.
The present study analyzed the expression level of aquaporins of plasma membrane intrinsic protein (PIP) class in response to arsenite (AsIII) exposure of 100 μM from 0.5 h to 8 days in Brassica juncea. The expression levels of most of the PIPs were down-regulated during the course of AsIII exposure. This led to decrease in total water content of plants, which in turn hampered seedling growth. The level of reactive oxygen species (superoxide radicals and hydrogen peroxide), lipid peroxidation and root oxidizability increased significantly upon exposure to AsIII as compared to that of control leading to an increase in cell death. The study proposes that the down-regulation of PIPs happened presumably to regulate AsIII levels, which, however, occurred at the cost of reduced growth, disturbed water balance and induced oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号