首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epigenetic marks displayed by a cancer cell originate from two separate processes: The most prominent epigenetic signatures are associated with the cell of origin, i.e., the lineage and cell type identity imposed during development. The second set comprises those aberrant cancer-specific epigenetic marks that appear during tumor initiation or subsequent malignant progression. These are generally thought to associate with tumor-promoting pathways. As biochemical pathways regulating epigenetic mechanisms are potentially “druggable” and reversible, there is considerable interest in defining their roles in tumor genesis and growth, as they may represent therapeutic targets for treatment of human neoplasias.1 However, despite the potential importance of epigenetic modifications in human cancer, it has been difficult to determine when, where and how epigenetic disruptions occur, and if they have important functional roles in sustaining the malignant state.  相似文献   

2.
3.
    
《Epigenetics》2013,8(6):798-802
The epigenetic marks displayed by a cancer cell originate from two separate processes: The most prominent epigenetic signatures are associated with the cell of origin, i.e., the lineage and cell type identity imposed during development. The second set comprises those aberrant cancer-specific epigenetic marks that appear during tumor initiation or subsequent malignant progression. These are generally thought to associate with tumor-promoting pathways. As biochemical pathways regulating epigenetic mechanisms are potentially “druggable” and reversible, there is considerable interest in defining their roles in tumor genesis and growth, as they may represent therapeutic targets for treatment of human neoplasias.1 Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150:12 - 27; http://dx.doi.org/10.1016/j.cell.2012.06.013; PMID: 22770212 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] However, despite the potential importance of epigenetic modifications in human cancer, it has been difficult to determine when, where and how epigenetic disruptions occur, and if they have important functional roles in sustaining the malignant state.  相似文献   

4.
《Epigenetics》2013,8(3):468-475
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants.  相似文献   

5.
The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Challenges, opportunities and perspectives” took place November 21–22, 2013 in Barcelona. The 2013 BCEC is the first edition of a series of annual conferences jointly organized by five leading research centers in Barcelona. These centers are the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), the Biomedical Campus Bellvitge with its Program of Epigenetics and Cancer Biology (PEBC), the Centre for Genomic Regulation (CRG), the Institute for Biomedical Research (IRB), and the Molecular Biology Institute of Barcelona (IBMB). Manuel Perucho and Marcus Buschbeck from the Institute of Predictive and Personalized Medicine of Cancer put together the scientific program of the first conference broadly covering all aspects of epigenetic research ranging from fundamental molecular research to drug and biomarker development and clinical application. In one and a half days, 23 talks and 50 posters were presented to a completely booked out audience counting 270 participants.  相似文献   

6.
随着对癌症研究的不断深入,表观遗传调控在癌症发生发展中的作用也越来越受到人们的关注。DNA基化作为一种重要的表观遗传修饰机制,在基因表达调控中起着十分重要的作用。该文对DNA基化模式及其在癌症中的作用作了综述,并对DNA甲基化作为癌症早期诊断的生物标记以及癌症表观治疗的新策略作了总结和展望。  相似文献   

7.
Embryonic stem (ES) cells distinct themselves from other cell type populations by their pluripotent ability. The unique features of ES cells are controlled by both genetic and epigenetic factors. Studies have shown that the methylation status of DNA and histones in ES cells is quite different from that of differentiated cells and somatic stem cells. Herein, we summarized recent advances in DNA and histone methylation studies of mammalian ES cells. The methylation status of several key pluripotent regulatory genes is also discussed.  相似文献   

8.
9.
Polycomb protein histone methyltransferase, enhancer of Zeste homolog 2 (EZH2), is frequently overexpressed in human malignancy and is implicated in cancer cell proliferation and invasion. However, it is largely unknown whether EZH2 has a role in modulating the DNA damage response. Here, we show that polycomb repressive complex 2 (PRC2) is recruited to sites of DNA damage. This recruitment is independent of histone 2A variant X (H2AX) and the PI-3-related kinases ATM and DNA-PKcs. We establish that PARP activity is required for retaining PRC2 at sites of DNA damage. Furthermore, depletion of EZH2 in cells decreases the efficiency of DSB repair and increases sensitivity of cells to gamma-irradiation. These data unravel a crucial role of PRC2 in determining cancer cellular sensitivity following DNA damage and suggest that therapeutic targeting of EZH2 activity might serve as a strategy for improving conventional chemotherapy in a given malignancy.  相似文献   

10.
DNA甲基化是重要的表观遗传修饰,主要发生在DNA的CpG岛. DNA的甲基化通过DNA甲基转移酶(DNA methyltransferases, DNMTs)完成. DNA甲基化参与了细胞分化、基因组稳定性、X染色体失活、基因印记等多种细胞生物学过程.单基因水平及基因组范围内的DNA甲基化改变在肿瘤发生发展中亦发挥重要作用. 抑癌基因的异常甲基化引起的表达抑制,可导致肿瘤细胞的增殖失控和侵袭转移,并参与肿瘤组织的血管生成过程.在许多肿瘤的研究中都发现了基因组整体DNA低甲基化所导致的染色体不稳定性. 本文从DNA的异常高甲基化和低甲基化两方面论述了DNA甲基化在细胞恶变发生发展过程中的改变及其影响,并阐述了DNA甲基化改变在肿瘤诊断和治疗中的作用.  相似文献   

11.
In this paper we describe a novel approach that may shed light on the genomic DNA methylation of organisms with non‐resolved genomes. The LUminometric Methylation Assay (LUMA) is permissive for genomic DNA methylation studies of any genome as it relies on the use of methyl‐sensitive and ‐insensitive restriction enzymes followed by polymerase extension via Pyrosequencing technology. Here, LUMA was used to characterize genomic DNA methylation in the lower brain stem region from 47 polar bears subsistence hunted in central East Greenland between 1999 and 2001. In these samples, average genomic DNA methylation was 57.9% ± 6.69 (SD; range was 42.0 to 72.4%). When genomic DNA methylation was related to brain mercury (Hg) exposure levels, an inverse association was seen between these two variables for the entire study population (P for trend = 0.17). After dichotomizing animals by gender and controlling for age, a negative trend was seen amongst male animals (P for trend = 0.07) but no associations were found in female bears. Such sexually dimorphic responses have been found in other toxicological studies. Our results show that genomic DNA methylation can be quantitatively studied in a highly reproducible manner in tissue samples from a wild organism with a non‐resolved genome. As such, LUMA holds great promise as a novel method to explore consequential questions across the ecological sciences that may require an epigenetic understanding.  相似文献   

12.
13.
Model organisms have contributed significantly to the understanding of basic biological phenomena. Suitable animal models are at hand for some research disciplines like genetics, development and cell biology but are still sought after for others like epigenetics. Research of the last years has revealed that the marbled crayfish (Marmorkrebs), which was discovered in the mid-1990s, meets researchers' demands for a vigorous, genetically identical and eurytopic laboratory model very well. Its most prominent advantages are production of high numbers of genetically identical offspring, stepwise alteration of the phenotype by moulting, complex morphology and behaviour and sequential generation of segments and limbs. This paper first reviews the discovery and research history of the marbled crayfish, its biology and culture and its special advantages. It then discusses, based on the published data, its suitability as a laboratory model for various research disciplines. The greatest potential of the marbled crayfish lies in epigenetics and environmental epigenomics and in stem cell research and regeneration. The marbled crayfish also appears to be suitable for the investigation of the role of stochastic developmental variation and epigenetic inheritance in evolution and to contribute to evo-devo and eco-devo. This unique crayfish is even of some value for applied biologists, for example as a toxicological test species.  相似文献   

14.
    
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.  相似文献   

15.
16.
DNA methylation plays an important role in carcinogenesis and is being recognized as a promising diagnostic and prognostic biomarker for a variety of malignancies including Prostate cancer (PCa). The human kallikrein-related peptidases (KLKs) have emerged as an important family of cancer biomarkers, with KLK3, encoding for Prostate Specific Antigen, being most recognized. However, few studies have examined the epigenetic regulation of KLKs and its implications to PCa. To assess the biological effect of DNA methylation on KLK6 and KLK10 expression, we treated PC3 and 22RV1 PCa cells with a demethylating drug, 5-aza-2′deoxycytidine, and observed increased expression of both KLKs, establishing that DNA methylation plays a role in regulating gene expression. Subsequently, we have quantified KLK6 and KLK10 DNA methylation levels in two independent cohorts of PCa patients operated by radical prostatectomy between 2007–2011 (Cohort I, n = 150) and 1998–2001 (Cohort II, n = 124). In Cohort I, DNA methylation levels of both KLKs were significantly higher in cancerous tissue vs. normal. Further, we evaluated the relationship between DNA methylation and clinicopathological parameters. KLK6 DNA methylation was significantly associated with pathological stage only in Cohort I while KLK10 DNA methylation was significantly associated with pathological stage in both cohorts. In Cohort II, low KLK10 DNA methylation was associated with biochemical recurrence in univariate and multivariate analyses. A similar trend for KLK6 DNA methylation was observed. The results suggest that KLK6 and KLK10 DNA methylation distinguishes organ confined from locally invasive PCa and may have prognostic value.  相似文献   

17.
《Epigenetics》2013,8(9):1037-1045
DNA methylation plays an important role in carcinogenesis and is being recognized as a promising diagnostic and prognostic biomarker for a variety of malignancies including Prostate cancer (PCa). The human kallikrein-related peptidases (KLKs) have emerged as an important family of cancer biomarkers, with KLK3, encoding for Prostate Specific Antigen, being most recognized. However, few studies have examined the epigenetic regulation of KLKs and its implications to PCa. To assess the biological effect of DNA methylation on KLK6 and KLK10 expression, we treated PC3 and 22RV1 PCa cells with a demethylating drug, 5-aza-2′deoxycytidine, and observed increased expression of both KLKs, establishing that DNA methylation plays a role in regulating gene expression. Subsequently, we have quantified KLK6 and KLK10 DNA methylation levels in two independent cohorts of PCa patients operated by radical prostatectomy between 2007–2011 (Cohort I, n = 150) and 1998–2001 (Cohort II, n = 124). In Cohort I, DNA methylation levels of both KLKs were significantly higher in cancerous tissue vs. normal. Further, we evaluated the relationship between DNA methylation and clinicopathological parameters. KLK6 DNA methylation was significantly associated with pathological stage only in Cohort I while KLK10 DNA methylation was significantly associated with pathological stage in both cohorts. In Cohort II, low KLK10 DNA methylation was associated with biochemical recurrence in univariate and multivariate analyses. A similar trend for KLK6 DNA methylation was observed. The results suggest that KLK6 and KLK10 DNA methylation distinguishes organ confined from locally invasive PCa and may have prognostic value.  相似文献   

18.
19.
The Second German-Catalan Workshop on Epigenetics and Cancer was held in Barcelona on November 19–21, 2014. The workshop brought together, for the second time, scientists from 2 German and 2 Catalan research institutions: the DKFZ, from Heidelberg, the CRCME, from Freiburg, and the IMPPC and PEBC/IDIBELL, both from Barcelona. The German-Catalan Workshops are intended to establish the framework for building a Research School to foster collaborations between researchers from the different institutions. Exchange programs for graduate students are among the activities of the future School. The topics presented and discussed in 33 talks were diverse and included work on DNA methylation, histone modifications, chromatin biology, characterization of imprinted regions in human tissues, non-coding RNAs, and epigenetic drug discovery. Among novel developments from the previous Workshop are the report of the epigenetics angle of the Warburg effect and the long-range trans-acting interaction of DNA methylation and of nucleosome remodeling. A shift in the view on DNA methylation became apparent by the realization of the intertwined interplay between hyper- and hypo-methylation in differentiation and cancer.  相似文献   

20.
肺癌病人肿瘤组织DNA高甲基化片段的筛选   总被引:2,自引:0,他引:2  
关于DNA甲基化在肿瘤中的作用的研究,大多集中在研究已知的抑癌基因启动子区的异常高甲基化。而一些未知的参与肿瘤发生的基因也可能受甲基化调控,寻找这些与肿瘤相关的基因,对深入了解肿瘤发生的机制具有重要意义。利用甲基化敏感性随机引物PCR(Methyrlation-Sensitive Arbitrarily Primed PCR,MS-AP-PCR),检查了肺癌组织中基因组范围内CpG岛高甲基化情况,分离到8个高甲基化片段(hypermethylated DNA fragment.HMDF)。通过克隆、测序和Blast、NewCpGseek软件分析,发现所有的片段均为典型的CpG岛,有4个片段与人2、7、9、10号染色体上的同源性为99%~100%,但只有1个是已知的基因。进一步利用Neural Network Promoter Prediction、TSSG和TSSW等软件对其余7个片段可能的生物学意义进行了分析,结果有4个片段是候选的启动子区,提示它们可能源于新基因。所获得的高甲基化片段可能是中国人肺癌发生过程中特有的表遗传学改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号