首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Takahashi  S Ghag  S Chládek 《Biochemistry》1986,25(25):8330-8336
We investigated the elongation factor Tu (EF-Tu) dependent binding of Phe-tRNA and Phe-tRNAs with the nicks at positions 46, 37, and 17 to the Escherichia coli 70S ribosome-poly(U)-tRNAPhe complex. Binding of Phe-tRNA1-45 + 47-76, Phe-tRNA1-36 + 38-76, or Phe-tRNA1-16 + 17-76 to the 70S ribosome has been found to be poly(U) X tRNA dependent and, similar to that of intact Phe-tRNA, is inhibited by the antibiotic thiostrepton. We have further found that, contrary to a previous report [Modolell, J., Cabrer, B., Parmeggiani, A., & Vazquez, D. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 1796], the EF-Tu-ribosome GTPase mediated by Phe-tRNA is not inhibited by thiostrepton; rather, the drug stimulates the endogenous GTPase of the EF-Tu X 70S ribosome. Phe-tRNA fragments 47-76, 38-76, and 17-76 all promote the EF-Tu X GTPase reaction in the presence of 70S ribosome-poly(U)-tRNAPhe yeast. Moreover, since the GTPase-promoting activities of both the short and long fragments are similar, it appears that the most important aminoacyl transfer ribonucleic acid (aa-tRNA) interaction with EF-Tu occurs alongside its 3' quarter. Thiostrepton slightly stimulates the GTPase activity of these Phe-tRNA fragments. Although the Phe-tRNA1-36 + 38-76 cannot bind to poly(U) during its binding to 70S ribosomes, its binding at high Mg2+ concentration occurs at the A site. Thus, most of the bound modified Phe-tRNA functions as the acceptor in the peptidyltransferase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Phe-tRNA Phe from yeast containing 2-thiocytidine or 5-iodocytidine in position 75 of the polynucleotide chain or Phe-tRNA Phe in which both positions 74 and 75 were substituted by 5-iodocytidine were investigated in the poly U-dependent polyphenylalanine synthesis on ribosomes from rabbit reticulocytes. Phe-tRNA Phe-Cps2CpA was nearly as active as the native Phe-tRNA Phe-CpCpA in the overall process. Phe-tRNA Phe-Cpi 5CpA as well as Phe-tRNA Phe-i5Cpi 5CpA were considerably less active than the native species. Investigation of individual steps of protein biosynthesis with these modified substrates revealed that the donor activity of peptidyl-tRNAs which contain 5-iodocytidine in their 3'-terminus is strongly imparied suggesting exacting structural requirements for the interaction of the CpCpA end of tRNA with the ribosomal P-site.  相似文献   

3.
C Güntner  E Holler 《Biochemistry》1979,18(10):2028-2038
The interaction between Phe-tRNA(Phe) or other acyl-tRNA derivatives thereof and phenylalanyl-tRNA synthetase of Escherichia coli K 10 has been investigated by nonequilibrium dialysis, by fluorescence titration in the presence of 2-p-toluidinylnaphthalene-6-sulfonate, by the kinetics of the aminoacylation of tRNA(Phe), and by the kinetics of the catalytic hydrolysis of Phe-tRNA(Phe). Phe-tRNA(Phe), or derivatives thereof, forms two types of complexes with the synthetase. One type involves the attachment of the phenylalanyl moiety to the phenylalanine-specific site of the enzyme, and the other type, to the tRNA(Phe)-specific binding site. They resemble alternative modes of a destabilized enzyme-product complex and are predicted on the basis of thermodynamic considerations. The two modes of binding of acyl-tRNA compete with each other. The attachment of Phe-tRNA(Phe) to the phenylalanine-specific site dominates. At equilibrium, this complex is present at a fourfold higher concentration than the other type of complex. The HNO2 deaminated Phe-tRNA(Phe) binds exclusively to the site specific for L-phenylalanine. On the contrary, Ile-tRNA(Phe) adds at 94.1% to the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) with this site leads to enzymatic hydrolysis into L-phenylalanine and tRNA(Phe). The complex involving the phenylalanine-specific site is hydrolytically unproductive. L-Phenylalanine acts as an activator of the hydrolysis by occupying the amino acid specific site and by shifting the equilibrium between the complexes toward the binding ot Phe-tRNA(Phe) at the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) at the phenylalanine-specific site does not interfere sterically with the binding of free tRNA(Phe). The sequential addition of free and aminoacylated tRNA(Phe) exhibits negative cooperativity. Such a mechanism could help to expel the product from the enzyme.  相似文献   

4.
Dissociation of highly purified EF-1 alpha beta gamma (a high molecular weight form of polypeptide chain elongation factor-1) from pig liver into EF-1 alpha and EF-1 beta gamma at various temperatures was examined and the following results were obtained. (i) When dissociation of EF-1 alpha beta gamma was analyzed by gel filtration with Sephacryl S-200, it was found that in the absence of GTP, it did not dissociate at any temperature between 4 and 37 degrees C, whereas in the presence of GTP, it tended to dissociate with elevation of the temperature, and almost complete dissociation was observed at 32 degrees C. This indicated that the dissociation constant of EF-1 alpha beta gamma into EF-1 alpha and EF-1 beta gamma in the presence of GTP increased with increase in the temperature. (ii) When gel filtration was performed in the presence of both GTP and [14C]Phe-tRNA, the formation of a ternary complex of EF-1 alpha . GTP . [14C]Phe-tRNA from EF-1 alpha beta gamma was noted, and its amount was found to increase with elevation of the temperature. (iii) The amount of [14C]Phe-tRNA bound to ribosomes dependent on added EF-1 alpha beta gamma similarly increased with increase in the temperature, as in the case of ternary complex formation, whereas the binding of [14C]Phe-tRNA to ribosomes dependent on free EF-1 alpha proceeded fairly well even at 0 degrees C. From these results we concluded that among the reaction steps in the binding of [14C]Phe-tRNA to ribosomes dependent on EF-1 alpha beta gamma, dissociation of EF-1 alpha beta gamma to form EF-1 alpha . GTP and EF-1 beta gamma in the presence of GTP is the step which is strongly influenced by temperature.  相似文献   

5.
Phe-tRNA from yeast has a highly modified nucleoside, called Y, adjacent to the 3′ side of its anticodon, that can be removed or replaced with proflavine. In a protein-synthesizing system from rabbit reticulocytes, poly (U)-directed binding and polyphenylalanine synthesis are low with these modified Phe-tRNA species relative to the corresponding values with unmodified Phe-tRNA. However, polymerization can be increased with relatively large amounts of elongation factor I. The modified Phe-tRNA species bound to the ribosomes with poly(U) either in the presence or absence of elongation factor I and GTP is immediately reactive in the peptidyl transferase reaction measured by the formation of diphenylalanine or phenylalanyl-puromycin. It appears to have been bound directly into the donor ribosomal site by either the nonenzymatic mechanism involving Mg2+ or by the enzymatic mechanism involving EF-I and GTP.  相似文献   

6.
The modes of action of a Vero toxin (VT2 or Shiga-like toxin II) from Escherichia coli, of ricin, and of alpha-sarcin were compared. Elongation factor 1 (EF1) and GTP-dependent Phe-tRNA binding to ribosomes in the presence of poly(U) was inhibited by these three toxins, but EF1 and guanylyl (beta, gamma-methylene)-diphosphate-dependent Phe-tRNA binding was inhibited by alpha-sarcin only. EF1- and Phe-tRNA-dependent GTPase activity was inhibited by these toxins, but nonenzymatic binding of Phe-tRNA was not. The turnover rate of EF1 binding to ribosomes during Phe-tRNA binding was also decreased by these three toxins. The addition of EF1 recovered the inhibition of Phe-tRNA binding to ribosomes by VT2 and ricin but not by alpha-sarcin. The formation of and EF2- and GTP-dependent puromycin derivative of phenylalanine was inhibited slightly by the three toxins, indicating that translocation is not influenced significantly by them. EF2-dependent GTPase activity was stimulated by these toxins, and especially by VT2 and ricin. In contrast, the binding of EF2 to ribosomes was inhibited strongly by VT2 and ricin, and slightly by alpha-sarcin. The stimulation of EF2-dependent GTPase activity by the toxins may compensate for the decrease of EF2 binding to ribosomes which they caused during translocation. In total, these results indicate that VT2 and ricin inhibit protein synthesis through the disturbance of the turnover of EF1 binding to ribosomes during aminoacyl-tRNA binding to ribosomes, and that alpha-sarcin inhibits the synthesis through the inhibition of the binding of the complex of Phe-tRNA, EF1, and GTP to ribosomes.  相似文献   

7.
Reversed-phase chromatography has been used to detect the presence of a new form of phenylalanyl-transfer ribonucleic acid (Phe-tRNA) from Escherichia coli growing exponentially in media containing low but nonlimiting levels of inorganic phosphate. The amount of this extra Phe-tRNA form is greatest in slowly growing cells (0.8 generations/h), and becomes negligible in media supporting a rapid growth rate (2.14 generations/h).  相似文献   

8.
The effect of several oligodeoxynucleotides complementary to the fragments of yellow lupin tRNA(Phe) was tested in the aminoacylation of tRNA(Phe) and in the binding of Phe-tRNA(Phe) to poly-U-programmed eukaryotic ribosomes. Oligonucleotides tested in the aminoacylation test did not give any inhibition. Monomers and dimers did not have any significant influence on the binding assay, either. A different percentage of inhibition of the binding of Phe-tRNA to ribosomes has been observed for oligonucleotides. Heptamer complementary to the anticodon loop gave 100% inhibition of the binding reaction. However, the oligonucleotides complementary to both the anticodon loop and stem and longer than the heptamer were much less effective inhibitors. A high inhibitory effect was also observed for trimers and for the decamer complementary to the D-loop and CCA-end.  相似文献   

9.
The α and β subunits of yeast mitochondrial Phe-tRNA synthetase are separated and isolated by means of chromatography on DEAE-cellulose, after enzyme alkylation with iodoacetate. The comparison of amino acid compositions of yeast mitochondrial and cytoplasmic native Phe-tRNA synthetases and their components shows significant differences. Results indicate that the two enzymes are coded for by different nuclear genes.  相似文献   

10.
Thallium acetate (TIOAc) effectively stimulates poly(U)-directed Phe-tRNA binding to mouse ascitic tumour ribosomes under conditions when other ribosomal functions are completely blocked. The TI+ optimum is about 200 mM. The reaction is stimulated by EF-1, but not significantly by GTP. EF-1-dependent ribosomal GTPase is inhibited by T1+. The isolated Phe-tRNA . ribosome complex is relatively stable. The bound Phe-tRNA does not react with puromycin in the presence of 175 mM KCl. The complex formed in the presence of 90-100 mM TlOAc can, after isolation, be directly utilized for polyphenylalanine synthesis. The complex formed at 200 mM TlOAc is less active, apparently because of damage to the 60-S subunits. TlOAc at low concentrations (8 mM) stimulates K+ -containing poly(U)-translating systems, probably by stabilizing the translation complex.  相似文献   

11.
The effects of GDP and of aurodox (N-methylkirromycin) on the affinity of elongation factor Tu (EF-Tu) for aminoacyl-tRNA (aa-tRNA) have been quantified spectroscopically by using Phe-tRNA(Phe)-Fl8, a functionally active analogue of Phe-tRNA(Phe) with a fluorescein dye convalently attached to the s4U-8 base. The association of EF-Tu.GDP with Phe-tRNA(Phe)-Fl8 resulted in an average increase of 33% in fluorescein emission intensity. This spectral change was used to monitor the extent of ternary complex formation as a function of EF-Tu.GDP concentration, and hence to obtain a dissociation constant, directly and at equilibrium, for the EF-Tu.GDP-containing ternary complex. The Kd for the Phe-tRNA(Phe)-Fl8.EF-Tu.GDP complex was found to average 28.5 microM, more than 33,000-fold greater than the Kd of the Phe-tRNA(Phe)-Fl8.EF-Tu.GTP complex under the same conditions. In terms of free energy, the delta G degree for ternary complex formation at 6 degrees C was -11.5 kcal/mol with GTP and -5.8 kcal/mol with GDP. Thus, the hydrolysis of the ternary complex GTP results in a dramatic decrease in the affinity of EF-Tu for aa-tRNA, thereby facilitating the release of EF-Tu.GDP from the aa-tRNA on the ribosome. Aurodox (200 microM) decreased the Kd of the GDP complex by nearly 20-fold, to 1.46 microM, and increased the Kd of the GTP complex by at least 6-fold. The binding of aurodox to EF-Tu therefore both considerably strengthens EF-Tu.GDP affinity for aa-tRNA and also weakens EF-Tu.GTP affinity for aa-tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During protein biosynthesis, elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes. This factor is highly conserved throughout evolution. However, several key residues differ between bacterial and mammalian mitochondrial EF-Tu (EF-Tu(mt)). One such residue is Ser221 (Escherichia coli numbering). This residue is conserved as a Ser or Thr in the bacterial factors but is present as Pro269 in EF-Tu(mt). Pro269 reorients the loop containing this residue and shifts the adjoining beta-strand in EF-Tu(mt) compared to that of E. coli EF-Tu potentially altering the binding pocket for the acceptor stem of the aa-tRNA. Pro269 was mutated to a serine residue (P269S) in EF-Tu(mt). For comparison, the complementary mutation was created at Ser221 in E. coli EF-Tu (S221P). The E. coli EF-Tu S221P variant is poorly expressed in E. coli and the majority of the molecules fail to fold into an active conformation. In contrast, EF-Tu(mt) P269S is expressed to a high level in E. coli. When corrected for the percentage of active molecules, both variants function as effectively as their respective wild-type factors in ternary complex formation using E. coli Phe-tRNA(Phe) and Cys-tRNA(Cys). They are also active in A-site binding and in vitro translation assays with E. coli Phe-tRNA(Phe). In addition, both variants are as active as their respective wild-type factors in ternary complex formation, A-site binding and in vitro translation assays using mitochondrial Phe-tRNA(Phe).  相似文献   

13.
Translational quality control is monitored at several steps, including substrate selection by aminoacyl-tRNA synthetases (aaRSs), and discrimination of aminoacyl-tRNAs by elongation factor Tu (EF-Tu) and the ribosome. Phenylalanyl-tRNA synthetase (PheRS) misactivates Tyr but is able to correct the mistake using a proofreading activity named editing. Previously we found that overproduction of editing-defective PheRS resulted in Tyr incorporation at Phe-encoded positions in vivo, although the misreading efficiency could not be estimated. This raised the question as to whether or not EF-Tu and the ribosome provide further proofreading mechanisms to prevent mistranslation of Phe codons by Tyr. Here we show that, after evading editing by PheRS, Tyr-tRNA(Phe) is recognized by EF-Tu as efficiently as the cognate Phe-tRNA(Phe). Kinetic decoding studies using full-length Tyr-tRNA(Phe) and Phe-tRNA(Phe), as well as a poly(U)-directed polyTyr/polyPhe synthesis assay, indicate that the ribosome lacks discrimination between Tyr-tRNA(Phe) and Phe-tRNA(Phe). Taken together, these data suggest that PheRS editing is the major proofreading step that prevents infiltration of Tyr into Phe codons during translation.  相似文献   

14.
D Ringer  S Chládek 《Biochemistry》1976,15(13):2759-2765
The mechanism of enzymatic binding of AAtRNA to the acceptor site Escherichia coli ribosomes has been studied using the following aminoacyl oligonucleotides as models of the 3' terminus of AA-tRNA: C-A-Phe, C-A-(2'-Phe)H, and C-A(2'H)Phe. T-psi-C-Gp was used as a model of loop IV of tRNA. The EF-T dependent binding of Phe-tRNA to ribosomes (in the presence of either GTP or GMPPCP) and the GTPase activity associated with EF-T dependent binding of the Phe-tRNA were inhibited by C-A-Phe,C-A(2'Phe)H, and C-A(2'H)Phe. These aminoacyl oligonucleotides inhibit both the formation of ternary complex EF-Tu-GTP-AA-tRNA and the interaction of this complex with the ribosomal A site. The uncoupled EF-Tu dependent GTPase (in the absence of AA-tRNA) was also inhibited by C-A-Phe, C-A(2'Phe)H, and C-A(2'H)Phe, while nonenzymatic binding of Phe-tRNA to the ribosomal A site was inhibited by C-A-Phe and C-A(2'-Phe)H, but not by C-A(2'H)Phe. The tetranucleotide T-psi-C-Gp inhibited both enzyme binding of Phe-tRNA and EF-T dependent GTP hydrolysis. However, inhibition of the latter reaction occured at a lower concentration of T-psi-C-Gp suggesting a specific role of T-psi-C-Gp loop of AA-tRNA in the GTPase reaction. The role of the 2' and 3' isomers of AA-tRNA during enzymatic binding to ribosomes is discussed and it is suggested that 2' leads to 3' transacylation in AA-tRNA is a step which follows GTP hydrolysis but precedes peptide bond formation.  相似文献   

15.
It was shown that Phe-tRNA Phe derivatives bearing arylazidogroups scattered statistically on N7 guanosine residues retain the ability to EF-Tu-dependent binding to E. coli ribosomes. UV-irradiation of the corresponding complex with the derivative of Phe-tRNA Phe located at A-site results in a specific modification of both ribosomal subunits to an approximately equal extent. It was found that proteins S9, S15, S16, S17, S18, S19 and L8/L9, L13, L15, L27 are labelled at A-site.  相似文献   

16.
Summary The effect of (p)ppGpp on the accuracy of translation in vitro was studied with a system that has a missense error frequency similar to that of living bacteria. When poly (U)1 is translated, limiation of the system in Phe increases the Leu missense error frequency. The introduction of (p)ppGpp to the Phelimited mixtures reduces significantly the missense errors as well as reduces the rate of translation. The introduction of (p)ppGpp to a full system has no effect on the accuracy of translation but does reduce its rate. The effects of (p)ppGpp on rate and accuracy of translation can be simulated in part by other inhibitors of translation such as GDPCP, fusidic acid and tetracycline. Furthermore, the presence of ppGpp or GDPCP in a Phe-limited system leads to an accumulation of Phe-tRNA, while a Phe-limited system that contains only GTP has negligibly small concentrations of Phe-tRNA. We conclude that one way in which (p)ppGpp improves the accuracy of translation is by permitting the system to maintain a favorable Phe-tRNA/Leu-tRNA ratio.  相似文献   

17.
Trans-diamminedichloroplatinum (II) was used to induce reversible crosslinks between EF-Tu and Phe-tRNA(Phe) within the ternary EF-Tu/GTP/Phe-tRNA(Phe) complex. Up to 40% of the complex was specifically converted into crosslinked species. Two crosslinking sites have been unambiguously identified. The major one encompassing nucleotides 58 to 65 is located in the 3'-part of the T-stem, and the minor one encompassing nucleotides 31 to 42 includes the anticodon loop and part of the 3'-strand of the anticodon stem.  相似文献   

18.
We have elaborated a method for the isolation of ribosomal subunits from fresh unfrozen human placenta containing intact rRNA and a complete set of ribosomal proteins. Activity of 80S ribosomes obtained by reassociation of 40S and 60S subunits in nonenzymatic poly(U)-dependent binding of Phe-tRNA(Phe) was equal to 80% (above 1.5 mol [14C]Phe-tRNA(Phe) is coupled to 1 mol of ribosomes). The activity of 80S ribosomes in poly(U)-directed synthesis of polyphenylalanine was tested in a polysome-free protein-synthesizing system from rabbit reticulocytes. About 100 mol of phenylalanine residue was polymerized by a mole of ribosomes at a rate of 0.83 residues per minute in this system (2 h, 37 degrees C).  相似文献   

19.
Virginiamycin M inhibits both peptide bond formation and binding of aminoacyl-tRNA to bacterial ribosomes, and induces a lasting inactivation of the 50 S subunit (50 S). In the present work, the effects of this antibiotic on the acceptor and donor sites of peptidyltransferase have been explored, in the presence of virginiamycin M as well as after its removal. Virginiamycin M inhibited the binding of puromycin to ribosomes and reduced both the enzymatic and nonenzymatic binding of Phe-tRNA to the A site by inducing its release from the ribosomes (similar effects were observed with 50 S), whereas the antibiotic had no effect on the binding of unacylated tRNAPhe to the same site. Moreover, virginiamycin M caused Ac-Phe-tRNA or Phe-tRNA to be released from the ribosomal P site, when complexes were incubated with unacylated tRNA, elongation factor G, and GTP (similar finding with 50 S). Instead, peptide bond formation between Ac-Phe-tRNA positioned at the P site and Phe-tRNA at the A site was found to take place, albeit at a very low rate, in the presence of the antibiotic. The overall conclusion is that both the acceptor and donor substrate binding sites of the peptidyltransferase, which interact with the aminoacyl moiety of tRNA, are permanently altered upon transient contact of ribosomes with virginiamycin M.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号