首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the membrane-integrated nitric oxide reductase cNOR from Pseudomonas aeruginosa was determined. The smaller NorC subunit of cNOR is comprised of 1 trans-membrane helix and a hydrophilic domain, where the heme c is located, while the larger NorB subunit consists of 12 trans-membrane helices, which contain heme b and the catalytically active binuclear center (heme b(3) and non-heme Fe(B)). The roles of the 5 well-conserved glutamates in NOR are discussed, based on the recently solved structure. Glu211 and Glu280 appear to play an important role in the catalytic reduction of NO at the binuclear center by functioning as a terminal proton donor, while Glu215 probably contributes to the electro-negative environment of the catalytic center. Glu135, a ligand for Ca(2+) sandwiched between two heme propionates from heme b and b(3), and the nearby Glu138 appears to function as a structural factor in maintaining a protein conformation that is suitable for electron-coupled proton transfer from the periplasmic region to the active site. On the basis of these observations, the possible molecular mechanism for the reduction of NO by cNOR is discussed. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

2.
Electron- and proton-transfer reactions in bacterial nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b3/FeB). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b3 is too fast to be resolved (>10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b3. NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of approximately 3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of approximately 10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving FeB. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b3 functions as the NO binding site during turnover.  相似文献   

3.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

4.
The crystal structures of bacterial nitric oxide reductases (NOR) from Pseudomonas aeruginosa and Geobacillus stearothermophilus were reported. The structural characteristics of these enzymes, especially at the catalytic site and on the pathway that catalytic protons are delivered, are compared, and the corresponding regions of aerobic and micro-aerobic cytochrome oxidases, O(2) reducing enzymes, which are evolutionarily related to NOR are discussed. On the basis of these structural comparisons, a mechanism for the reduction of NO to produce N(2)O by NOR, and the possible molecular evolution of the proton pumping ability of the respiratory enzymes is discussed. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

5.
In this study, we have analyzed interflavin electron transfer reactions from FAD to FMN in both the full-length inducible nitric oxide synthase (iNOS) and its reductase domain. Comparison is made with the interflavin electron transfer in NADPH-cytochrome P450 reductase (CPR). For the analysis of interflavin electron transfer and the flavin intermediates observed during catalysis we have used menadione (MD), which can accept an electron from both the FAD and FMN sites of the enzyme. A characteristic absorption peak at 630 and 520 nm can identify each FAD and FMN semiquinone species, which is derived from CPR and iNOS, respectively. The charge transfer complexes of FAD with NADP+ or NADPH were monitored at 750 nm. In the presence of MD, the air-stable neutral (blue) semiquinone form (FAD-FMNH*) was observed as a major intermediate during the catalytic cycle in both the iNOS reductase domain and full-length enzyme, and its formation occurred without any lag phase indicating rapid interflavin electron transfer following the reduction of FAD by NADPH. These data also strongly suggest that the low level reactivity of a neutral (blue) FMN semiquinone radical with electron acceptors enables one-electron transfer in the catalytic cycle of both the FAD-FMN pairs in CPR and iNOS. On the basis of these data, we propose a common model for the catalytic cycle of both CaM-bound iNOS reductase domain and CPR.  相似文献   

6.
The review briefly summarizes current knowledge of the bacterial nitric-oxide reductase (NOR). This membrane enzyme consists of two subunits, the smaller one contains haem C and the larger one two haems B and nonhaem iron. The protein sequence and structure of metal centres demonstrate the relationship of NOR to the family of terminal oxidases. The binuclear Fe-Fe reaction centre, consisting of antiferromagnetically coupled haem B and nonhaem iron, is analogous to Fe-Cu centre of terminal oxidases. The data on the structure and function of NOR and terminal oxidases suggest that all these enzymes are closely evolutionally related. The catalytic properties are determined most of all by the relatively high toxicity of nitric oxide as a substrate and the resulting strong need to maintain its concentration at nanomolar levels. A kinetic model of the action of the enzyme comprises substrate inhibition. NOR does not conserve the free energy of nitric oxide reduction because it does not work as a proton pump and, moreover, the protons coming into the reaction are taken from periplasm, i.e. they do not cross the membrane.  相似文献   

7.
Flock U  Watmough NJ  Adelroth P 《Biochemistry》2005,44(31):10711-10719
The respiratory nitric oxide reductase (NOR) from Paracoccus denitrificans catalyzes the two-electron reduction of NO to N(2)O (2NO + 2H(+) + 2e(-) --> N(2)O + H(2)O), which is an obligatory step in the sequential reduction of nitrate to dinitrogen known as denitrification. NOR has four redox-active cofactors, namely, two low-spin hemes c and b, one high-spin heme b(3), and a non-heme iron Fe(B), and belongs to same superfamily as the oxygen-reducing heme-copper oxidases. NOR can also use oxygen as an electron acceptor; this catalytic activity was investigated in this study. We show that the product in the steady-state reduction of oxygen is water. A single turnover of the fully reduced NOR with oxygen was initiated using the flow-flash technique, and the progress of the reaction monitored by time-resolved optical absorption spectroscopy. Two major phases with time constants of 40 micros and 25 ms (pH 7.5, 1 mM O(2)) were observed. The rate constant for the faster process was dependent on the O(2) concentration and is assigned to O(2) binding to heme b(3) at a bimolecular rate constant of 2 x 10(7) M(-)(1) s(-)(1). The second phase (tau = 25 ms) involves oxidation of the low-spin hemes b and c, and is coupled to the uptake of protons from the bulk solution. The rate constant for this phase shows a pH dependence consistent with rate limitation by proton transfer from an internal group with a pK(a) = 6.6. This group is presumably an amino acid residue that is crucial for proton transfer to the catalytic site also during NO reduction.  相似文献   

8.
Regulation of soluble guanylate cyclase (sGC), the primary NO receptor, is linked to NO binding to the prosthetic heme group. Recent studies have demonstrated that the degree and duration of sGC activation depend on the presence and ratio of purine nucleotides and on the presence of excess NO. We measured NO dissociation from full-length alpha1beta1 sGC, and the constructs beta1(1-194), beta1(1-385), and beta2(1-217), at 37 and 10 degrees C with and without the substrate analogue guanosine-5'-[(alpha,beta-methylene]triphosphate (GMPCPP) or the activator 3-(5'-hydroxymethyl-3'-furyl)-1-benzylindazole (YC-1). NO dissociation from each construct was complex, requiring two exponentials to fit the data. Decreasing the temperature decreased the contribution of the faster exponential for all constructs. Inclusion of YC-1 moderately accelerated NO dissociation from sGC and beta2(1-217) at 37 degrees C and dramatically accelerated NO dissociation from sGC at 10 degrees C. The presence of GMPCPP also dramatically accelerated NO dissociation from sGC at 10 degrees C. This acceleration is due to increases in the observed rate for each exponential and in the contribution of the faster exponential. Increases in the contribution of the faster exponential correlated with higher activation of sGC by NO. These data indicate that the sGC ferrous-nitrosyl complex adopts two 5-coordinate conformations, a lower activity "closed" form, which releases NO slowly, and a higher activity "open" form, which releases NO rapidly. The ratio of these two species affects the overall rate of NO dissociation. These results have implications for the function of sGC in vivo, where there is evidence for two NO-regulated activity states.  相似文献   

9.
The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site.  相似文献   

10.
The c-type nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans is an integral membrane protein that catalyzes NO reduction; 2NO + 2e + 2H+ → N2O + H2O. It is also capable of catalyzing the reduction of oxygen to water, albeit more slowly than NO reduction. cNORs are divergent members of the heme-copper oxidase superfamily (HCuOs) which reduce NO, do not pump protons, and the reaction they catalyse is non-electrogenic. All known cNORs have been shown to have five conserved glutamates (E) in the catalytic subunit, by P. denitrificans numbering, the E122, E125, E198, E202 and E267. The E122 and E125 are presumed to face the periplasm and the E198, E202 and E267 are located in the interior of the membrane, close to the catalytic site. We recently showed that the E122 and E125 define the entry point of the proton pathway leading from the periplasm into the active site [U. Flock, F.H. Thorndycroft, A.D. Matorin, D.J. Richardson, N.J. Watmough, P. Ädelroth, J. Biol. Chem. 283 (2008) 3839-3845]. Here we present results from the reaction between fully reduced NOR and oxygen on the alanine variants of the E198, E202 and E267. The initial binding of O2 to the active site was unaffected by these mutations. In contrast, proton uptake to the bound O2 was significantly inhibited in both the E198A and E267A variants, whilst the E202A NOR behaved essentially as wildtype. We propose that the E198 and E267 are involved in terminating the proton pathway in the region close to the active site in NOR.  相似文献   

11.
The mechanism of the nitric oxide reduction in a bacterial nitric oxide reductase (NOR) has been investigated in two model systems of the heme-b3-FeB active site using density functional theory (B3LYP). A model with an octahedral coordination of the non-heme FeB consisting of three histidines, one glutamate and one water molecule gave an energetically feasible reaction mechanism. A tetrahedral coordination of the non-heme iron, corresponding to the one of CuB in cytochrome oxidase, gave several very high barriers which makes this type of coordination unlikely. The first nitric oxide coordinates to heme b3 and is partly reduced to a more nitroxyl anion character, which activates it toward an attack from the second NO. The product in this reaction step is a hyponitrite dianion coordinating in between the two irons. Cleaving an NO bond in this intermediate forms an FeB (IV)O and nitrous oxide, and this is the rate determining step in the reaction mechanism. In the model with an octahedral coordination of FeB the intrinsic barrier of this step is 16.3 kcal/mol, which is in good agreement with the experimental value of 15.9 kcal/mol. However, the total barrier is 21.3 kcal/mol, mainly due to the endergonic reduction of heme b3 taken from experimental reduction potentials. After nitrous oxide has left the active site the ferrylic FeB will form a μ-oxo bridge to heme b3 in a reaction step exergonic by 45.3 kcal/mol. The formation of a quite stable μ-oxo bridge between heme b3 and FeB is in agreement with this intermediate being the experimentally observed resting state in oxidized NOR. The formation of a ferrylic non-heme FeB in the proposed reaction mechanism could be one reason for having an iron as the non-heme metal ion in NOR instead of a Cu as in cytochrome oxidase.  相似文献   

12.
In this paper, we report the identification of a norCBQD gene cluster that encodes a functional nitric oxide reductase (Nor) in Nitrosomonas europaea. Disruption of the norB gene resulted in a strongly diminished nitric oxide (NO) consumption by cells and membrane protein fractions, which was restored by the introduction of an intact norCBQD gene cluster in trans. NorB-deficient cells produced amounts of nitrous oxide (N2O) equal to that of wild-type cells. NorCB-dependent activity was present during aerobic growth and was not affected by the inactivation of the putative fnr gene. The findings demonstrate the presence of an alternative site of N2O production in N. europaea.  相似文献   

13.
14.
Highly purified rat lung soluble guanylate cyclase was activated with nitric oxide or sodium nitroprusside and the degree of activation varied with incubation conditions. With Mg2+ as the action cofactor, about 2- to 8-fold activation was observed with nitric oxide or sodium nitroprusside alone. Markedly enhanced activation (20-40 fold) was observed when 1 muM hemin added to the enzyme prior to exposure to the activating agent. The activation with hemin and sodium nitroprusside was prevented in a dose-dependent manner by sodium cyanide. The level activation was also increased by the addition of 1 mM dithiothreitol, but unlike hemin which had no effect on basal enzyme activity, dithiothreitol led to a considerable increase in basal activity. Activated guanylate cyclase decayed to basal activity within one hour at 2 degrees C and the enzyme could be reactivated upon re-exposure to nitroprusside or nitric oxide. Under basal conditions, Michaelis-Menten kinetics were observed, with a Km for GTP of 140 muM with Mg2+ cofactor. Following activation with nitroprusside or nitric oxide, curvilinear Eadie-Hofstee transformations of kinetic data were observed, with Km's of 22 MuM and 100 MuM for Mg-GTP. When optimal activation (15-40 fold) was induced by the addition of hemin and nitroprusside, multiple Km's were also seen with Mg-GTP and the high affinity form was predominant (22 MuM). Similar curvilinear Eadie-Hofstee transformations were observed with Mn2+ as the cation cofactor. These data suggest that multiple GTP catalytic sites are present in activated guanylate cyclase, or alternatively, multiple populations of enzyme exist.  相似文献   

15.
We have performed the recombinant expression and purification of the reductase domain of endothelial nitric oxide synthase (eNOS) and used it as a bait in search for interacting proteins present in endothelial cells. Using mass spectrometry of the bound proteins run in a PAGE-SDS gel, we were able to identify the ryanodine receptor (RyR) as a novel eNOS-binding partner. This interaction was confirmed through immunoprecipitation of both RyR and eNOS from endothelial cells and cardiac myocytes. Immunofluorescence data indicated that a subpopulation of eNOS associates with RyR in perinuclear regions of the cell, where eNOS might be responsible for the known nitrosylation of RyR.  相似文献   

16.
Bacterial nitric oxide reductase (NOR), a member of the superfamily of heme-copper oxidases, catalyzes the two-electron reduction of nitric oxide to nitrous oxide. The key feature that distinguishes NOR from the typical heme-copper oxidases is the elemental composition of the dinuclear center, which contains non-heme iron (FeB) rather than copper (CuB). UV-vis electronic absorption and room-temperature magnetic circular dichroism (RT-MCD) spectroscopies showed that CO binds to Fe(II) heme b3 to yield a low-spin six-coordinate species. Photolysis of the Fe(II)-CO bond is followed by CO recombination (k(on) = 1.7 x 10(8) M(-1) x s(-1)) that is approximately 3 orders of magnitude faster than CO recombination to the active site of typical heme-copper oxidases (k(on) = 7 x 10(4) M(-1)x s(-1)). This rapid rate of CO recombination suggests an unimpeded pathway to the active site that may account for the enzyme's high affinity for substrate, essential for maintaining denitrification at low concentrations of NO. In contrast, the initial binding of CO to reduced heme b3 measured by stopped-flow spectroscopy is much slower (k(on) = 1.2 x 10(5) M(-1) x s(-1)). This suggests that an existing heme distal ligand (water/OH-) may be displaced to elicit the spin-state change observed in the RT-MCD spectrum.  相似文献   

17.
The mechanism of the nitric oxide reduction in a bacterial nitric oxide reductase (NOR) has been investigated in two model systems of the heme-b(3)-Fe(B) active site using density functional theory (B3LYP). A model with an octahedral coordination of the non-heme Fe(B) consisting of three histidines, one glutamate and one water molecule gave an energetically feasible reaction mechanism. A tetrahedral coordination of the non-heme iron, corresponding to the one of Cu(B) in cytochrome oxidase, gave several very high barriers which makes this type of coordination unlikely. The first nitric oxide coordinates to heme b(3) and is partly reduced to a more nitroxyl anion character, which activates it toward an attack from the second NO. The product in this reaction step is a hyponitrite dianion coordinating in between the two irons. Cleaving an NO bond in this intermediate forms an Fe(B) (IV)O and nitrous oxide, and this is the rate determining step in the reaction mechanism. In the model with an octahedral coordination of Fe(B) the intrinsic barrier of this step is 16.3 kcal/mol, which is in good agreement with the experimental value of 15.9 kcal/mol. However, the total barrier is 21.3 kcal/mol, mainly due to the endergonic reduction of heme b(3) taken from experimental reduction potentials. After nitrous oxide has left the active site the ferrylic Fe(B) will form a mu-oxo bridge to heme b(3) in a reaction step exergonic by 45.3 kcal/mol. The formation of a quite stable mu-oxo bridge between heme b(3) and Fe(B) is in agreement with this intermediate being the experimentally observed resting state in oxidized NOR. The formation of a ferrylic non-heme Fe(B) in the proposed reaction mechanism could be one reason for having an iron as the non-heme metal ion in NOR instead of a Cu as in cytochrome oxidase.  相似文献   

18.
Inactivation of ribonucleotide reductase by nitric oxide.   总被引:23,自引:0,他引:23  
Ribonucleotide reductase has been demonstrated to be inhibited by NO synthase product(s). The experiments reported here show that nitric oxide generated from sodium nitroprusside, S-nitrosoglutathione and the sydnonimine SIN-1 inhibits ribonucleotide reductase activity present in cytosolic extracts of TA3 mammary tumor cells. Stable derivatives of these nitric oxide donors were either inactive or much less inhibitory. EPR experiments show that the tyrosyl radical of the small subunit of E. Coli or mammalian ribonucleotide reductase is efficiently scavenged by these NO donors.  相似文献   

19.
The nitric oxide reductase of Paracoccus denitrificans.   总被引:7,自引:0,他引:7       下载免费PDF全文
The nitric oxide (NO) reductase activity of the cytoplasmic membrane of Paracoccus denitrificans can be solubilized in dodecyl maltoside with good retention of activity. The solubilized enzyme lacks NADH-dependent activity, but can be assayed with isoascorbate plus 2,3,5,6-tetramethylphenylene-1,4-diamine as electron donor and with horse heart cytochrome c as mediator. Reduction of NO was measured with an amperomeric electrode. The solubilized enzyme could be separated from other electron-transport components, including the cytochrome bc1 complex and nitrite reductase, by several steps of chromatography. The purified enzyme had a specific activity of 11 mumols.min-1.mg of protein-1 and the Km(NO) was estimated as less than 10 microM. The enzyme formed N2O from NO with the expected stoichiometry. These observations support the view that NO reductase is a discrete enzyme that participates in the denitrification process. The enzyme contained both b- and c-type haems. The former was associated with a polypeptide of apparent molecular mass 37 kDa and the latter with a polypeptide of 18 kDa. Polypeptides of 29 and 45 kDa were also identified in the purified protein which showed variable behaviour on electrophoresis in polyacrylamide gels.  相似文献   

20.
Regulators of bacterial responses to nitric oxide   总被引:1,自引:0,他引:1  
Nitric oxide (NO) is an intermediate of the respiratory pathway known as denitrification, and is a by-product of anaerobic nitrite respiration in the enteric Bacteria. Pathogens are also exposed to NO inside host phagocytes, and possibly in other host niches as well. In recent years it has become apparent that there are multiple regulatory systems in prokaryotes that mediate responses to NO exposure. Owing to its reactivity, NO also has the potential to perturb the activities of other regulatory proteins, which are not necessarily directly involved in the response to NO. This review describes the current state of understanding of regulatory systems that respond to NO. An emerging trend is the predominance of iron proteins among the known physiological NO sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号