首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Excitatory properties of visual cells in the lateral eye of Limulus, investigated by optic nerve recordings in situ, differ significantly from the properties of cells in the classical, excised eye preparation. The differences suggest the possibility that two receptor mechanisms function in the eye in situ: one mechanism encodes low light intensities and the other responds to high intensities. The two mechanisms enable each ommatidium to respond over an intensity range of approximately 10 log units. This hypothesis was tested by measuring the increment threshold and the spectral sensitivity, by studying light and dark adaptation, and by analyzing the variability of the impulse discharge. Although the results do not conclusively identify two receptor mechanisms, they indicate that a process or a part of a process that functions in the eye in situ is abolished by excising the eye or cutting off its blood supply.  相似文献   

2.
Inhibition in the Limulus lateral eye in situ   总被引:1,自引:1,他引:0       下载免费PDF全文
Inhibition in the Limulus lateral eye in situ is qualitatively similar to that in the excised eye. In both preparations ommatidia mutually inhibit one another, and the magnitude of the inhibitory effects are linear functions of the response rate of individual ommatidia. The strength of inhibition exerted between single ommatidia is also about the same for both preparations; however, stronger effects can converge on a single ommatidium in situ. At high levels of illumination of the retina in situ the inhibitory effects are often strong enough to produce sustained oscillations in the discharge of optic nerve fibers. The weaker inhibitory influences at low levels of illumination do not produce oscillations but decrease the variance of the optic nerve discharge. Thresholds for the inhibitory effects appear to be determined by both presynaptic and postsynaptic cellular processes. Our results are consistent with the idea that a single ommatidium can be inhibited by more of its neighbors in an eye in situ than in an excised eye. Leaving intact the blood supply to the eye appears to preserve the functional integrity of the retinal pathways which mediate inhibition.  相似文献   

3.
Indoleamines and the eccentric cells of the Limulus lateral eye   总被引:3,自引:0,他引:3  
The lateral eye of the horseshoe crab, Limulus polyphemus, was studied by fluorescence microscopy according to Falck and Hillarp and microspectrofluorometry for identifying neuronal monoamines. After the formaldehyde treatment, the eccentric cells and their axons have a yellowish, rapidly fading fluorescence, such as is seen with 5-hydroxytryptamine. The microspectrofluorometric analysis was compatible with the fluorescence being caused by an indole, which could not be definitely identified, however. The eccentric cells have the ability to accumulate indoleamines such as 5-hydroxytryptamine, 6-hydroxytryptamine and 5,6-dihydroxytryptamine. Their axons were best demonstrated after being loaded with 6-hydroxytryptamine. Characteristic varicose terminals were seen in the neuropil, often arranged in clusters. Other terminals, possibly originating from the eccentric cells, were also seen among the pigment cells in the basal part of the ommatidia.  相似文献   

4.
The relationship between retinula and eccentric cells in the lateral eye of Limulus polyphemus was studied using a double electrode technique which permitted simultaneous recording of light-initiated responses in two sense cells and the labeling of the cells for subsequent histological examination and identification. The following results were obtained: (a) light-initiated slow responses with and without superimposed spike potentials were recorded from retinula cells and from eccentric cells (only one eccentric cell yielded responses without superimposed spike potentials); (b) spike potentials recorded in different cells within the same ommatidium were always synchronous; (c) a complete absence of spike potentials was observed in two experiments in which no eccentric cells could be found in the ommatidia containing the labeled retinula cells; (d) the greatest differences in the characteristics of responses recorded simultaneously occurred in those recorded from retinula-eccentric combinations. The results indicate that there is only one source of spike potential activity within an ommatidium (presumably the eccentric cell) and that the light-initiated response of retinula cells may be independent of the eccentric cell response. The suggestion is advanced that the response of the retinula cell may "trigger" the eccentric cell response.  相似文献   

5.
Patterns of optic nerve activity were computed for stationary step patterns of illumination from theoretical models of lateral inhibiton based on revised Hartlin-Ratliff equations. The computed response patterns contain well-defined Mach bands which match closely in amplitude and shape those recorded from single optic nerve fibers of the Limulus lateral eye. Theory and experiment show that the amplitude of the Mach bands is reduced by in inhibitory nonlinearity, the width of the Mach bands is approximately equal to the lateral dimension of the inhibitory field, but the shapes of the Mach bands are poor indices of the precise configuration of the inhibitory field. Theorems are proved establishing the equivalence of Mach-band patterns for models of different dimensions and a uniqueness condition for solutions of the piecewise linear model.  相似文献   

6.
7.
8.
Dynamic responses of visual cells of the Limulus eye to stimuli of sinusoids and narrow pulses of light superimposed on a nonzero mean level have been obtained. Amplitudes and phase angles of averaged sinusoidal generator potential are plotted with respect to frequency of intensity modulation for different mean levels of light adaptation. At frequencies above 10 CPS, generator potential amplitudes decrease sharply and phase lag angle increases. At frequencies below 1 CPS, amplitude decreases. A maximum of amplitude in the region of 1 to 2 CPS is apparent with increased mean intensity. The generator potential responses are compared with those of differential equation models. Variation of gain with mean intensity for incremental stimuli is consistent with logarithmic sensitivity of the photoreceptor. Frequency response of the photoreceptor derived from narrow pulses of light predicts the frequency response obtained with sinusoidal stimuli, and the photoreceptor is linear for small signals in the light-adapted state.  相似文献   

9.
The receptor specificity for synaptically mediated lateral inhibition in Limulus lateral eye retina was studied by structure-activity correlations of the action of the putative indoleaminergic neurotransmitter, serotonin (5-HT), and its isomers and structural analogs, tryptamine (TRYP), 6-hydroxytryptamine (6HT), 5,6-dihydroxytryptamine (5,6-DHT), 5-hydroxydimethyltryptamine (5-HDMT), and 5-hydroxytryptophan (5-HTP). The 5-HT blockers, lysergic acid diethylamide (LSD), bromo-LSD (BOL), and cinanserin, were also tested. The inhibitory action of the indoleaminergic agonists is highly structure-specific. An hydroxyl group in the 5 position of the indole nucleus, sterically unencumbered by hydroxyls in neighboing positions, is essential. In order of decreasing potency, 5-HT, 5-HDMT, and 5-HTP are active agonists; TRYP, 6-HT, and 5,6-DHT are inactive. Configuration and mobility of the side chains of the active agonists also affect the interaction, and these side-chain characteristics correlate with agonist potency. The receptors for inhibitory action and for transmembranal transport in reuptake are different. Both active agonists and inactive analogs appear to be taken up (Adolph and Ehinger, 1975. Cell Tissue Res. 163:1-14). LSD and BOL have bimodal actions: direct inhibition and agonist blockade. These actions may be mediated via low-specificity presynaptic uptake receptor sites rather than highly specific, postsynaptic, agonist receptor sites.  相似文献   

10.
The encoding of light stimuli into spike trains in the Limulus lateral eye is shown to be markedly nonlinear in our conditions of stimulation. Our experimental results support the conclusion that nonlinearities are enhanced by lateral inhibition but arise within the single ommatidium, and are due to the high gain in the transduction from generator potential to spike rate. This high gain is in turn related to the existence, in the steady relation between generator potential and spike rate, of a positive threshold on the generator potential.  相似文献   

11.
The dynamics of the Limulus retina may be well described by the spatiotemporal transfer function, which measures the response of the eye to moving sinusoidal gratings. We consider a model for this system, which incorporates an excitatory generator potential, and self- and lateral inhibitory processes. Procedures are described which allow estimation of parameters for the model consistent with the empirical transfer function data. Transfer functions calculated from the model show good agreement with laboratory measurements, and may be used to predict accurately the response of the eye to arbitrary moving stimuli. The model allows convenient interpretation of the transfer function measurements in terms of physiological processes which underly the response of the Limulus retina.  相似文献   

12.
Putative synaptic mechanisms of inhibition in Limulus lateral eye   总被引:3,自引:3,他引:0       下载免费PDF全文
Serotonin (5-HT) perfusion of a thin section of Limulus lateral eye hyperpolarizes retinular and eccentric cell membrane potential, and blocks spike action potentials fired by the eccenteric cell. The indoleamine does not directly affect retinular cell receptor potential or eccenteric cell generator potential in response to light stimuli. LSD perfusion blocks both this inhibitory action of 5-HT and light-evoked, synaptically mediated, lateral inhibition. Iontophoretic application of 5-HT to the synaptic neuropil produces shorter latency and duration and larger amplitude of inhibition than does the perfusion technique. This inhibition is dose dependent; the accompanying inhibitory postsynaptic potential (IPSP) appears to have an equilibrium potential more hyperpolarized than normal resting potential levels of ca. -50 mV. IPSP amplitude is sensitive to extracellular potassium ion concentration: it increases with decreased [K+]0 and decreases with increased [K+]0. LSD blocks the inhibition produced by iontophoretic application of 5-HT. Interaction between light-evoked, natural synaptic transmitter-mediated IPSP's and 5-HT IPSP's suggests a common postsynaptic receptor or transmitter-receptor-permeability change mechanism.  相似文献   

13.
14.
Electroretinograms were recorded from the horseshoe crab compound eye using a high-intensity light-emitting diode and a whole-eye seawater electrode. Recordings were made from both lateral eyes in natural daylight or in continuous darkness with the optic nerve intact or cut. Recordings from two eyes of the same animal in different conditions facilitated direct comparisons of the effects of diurnal lighting and circadian efferent activity on the daily patterns of sensitivity of the eye. Structural changes appear to account for about half of the total electroretinogram excursion. Circadian input begins about 45 min in advance of sunset and the nighttime sensitivity returns to the daytime values 20 min after sunrise. When the optic nerve is cut, the nighttime sensitivity shows exponential decay over the next 5 or 6 days, consistent with a light-triggered structural light adaptation process unopposed by efferent input. Our results suggest that two mechanisms mediate the increase in lateral eye sensitivity at night—physiological dark adaptation and circadian efferent input. Three mechanisms appear to be involved in mediating the decrease in lateral eye sensitivity during daylight—physiological light adaptation, a continuous structural light adaptation process, and a separate light-triggered, efferent-primed structural light adaptation process.  相似文献   

15.
The sensitivity of the Limulus lateral eye exhibits a pronounced circadian rhythm. At night a circadian oscillator in the brain activates efferent fibers in the optic nerve, inducing multiple changes in the physiological and anatomical characteristics of retinal cells. These changes increase the sensitivity of the retina by about five orders of magnitude. We investigated whether this increase in retinal sensitivity is accompanied by changes in the ability of the retina to process temporal information. We measured the frequency transfer characteristic (FTC) of single receptors (ommatidia) by recording the response of their optic nerve fibers to sinusoidally modulated light. We first measured the FTC in the less sensitive daytime state and then after converting the retina to the more sensitive nighttime state by electrical stimulation of the efferent fibers. The activation of these fibers shifted the peak of the FTC to lower frequencies and reduced the slope of the low-frequency limb. These changes reduce the eye's ability to detect rapid changes in light intensity but enhance its ability to detect dim flashes of light. Apparently Limulus sacrifices temporal resolution for increased visual sensitivity at night.  相似文献   

16.
The structure of the “Corneagen,” i.e., the epidermis lying beneath the cornea-lens of the lateral eyes of the adult intermolt Limulus polyphemus was studied with light and electron microscopy. This layer is composed of heavily columnar cells containing a striking number of cytoplasmic microtubules. Many of the microtubules are grouped into compact bundles or fascicles, generally each cell having at least one microtubule bundle. The cornealens end of each cell has numerous microvilli, each with a core of delicate filaments. The crypts between microvilli end in extracellular expansions and plaques of electron dense amorphous material are associated with these terminal expansions. Cytoplasmic microtubules appear to insert into these dense areas. The basal ends of the cells are thrown into many pseudopodial processes which extend into the surrounding extracellular space. The cytoplasm of the pseudopodia is composed largely of microtubules and their associated low density halos. Junctional complexes consisting of zonulae adhaerens and septate desmosomes are present between adjacent cells. Mitochondria, ER, cytoplasmic vesicles, Golgi stacks and other ultrastructural details of the epidermal cells are described. The ultrastructure of a column of pigment free processes lying between the apex of the lens cone and the underlying photoreceptive portion of the ommatidium is also described. Ducts or vessels of uncertain origin are present in the inter-ommatidial spaces. Possible roles played by the microtubules, the significance of their disposition and of their association with the dense subsurface plaques are discussed in terms of intracellular support, epidermis-lens attachment and extracellular pattern determination. In addition, the likelihood of the dense plaques being the site of microtubule assembly is considered.  相似文献   

17.
18.
The 1:1 phase locking of the neural discharge to sinusoidally modulated stimuli was investigated both theoretically and experimentally. On the theoretical side, a neural encoder model, the self-inhibited leaky integrator, was considered, and the phase of the locked impulse was computed for each frequency in the locking range by imposing the condition that the "leaky integral" u(t) of the driving signal should reach the threshold for the first time one stimulus period after the preceding impulse. As u(t) can be a nonmonotonic function, this approach leads to results that sometimes differ from those reported in the literature. It turns out that the phase excursion is often much smaller than the values of about 180 degrees predicted from previous analysis. Moreover, our analysis shows a peculiar effect; the phase locking frequency range narrows when the input modulation depth increases. The theoretical predictions are then compared with phase-locked discharge patterns recorded from visual cells of the Limulus lateral eye, stimulated by sinusoidally modulated light or depolarizing current. The phases of the locked spikes at each of a number of modulation frequencies have been measured. The predictions offered by the model fit the experimental data, although there are some difficulties in determining the effective driving signal.  相似文献   

19.
Lengthy uninterrupted series of sections of the neural plexus in the compound eye of the horseshoe crab, Limulus polyphemus, have been used to reconstruct all the arborizations and their synaptic interconnections in a neuropil knot. This one microglomerulus contains the axons of 19 retinular cells, which pass by without contacts; 13 efferent fibres with 44 synapses to and from eccentric cell collaterals; and arborizations from 54 eccentric cells with 577 synapses. Eccentric cell axons are devoid of synaptic input. Their collaterals ramify in synaptic knots and subserve both pre- and postsynaptic functions simultaneously. Arborizations near the axon of origin have a highly branched pattern (up to 20 bifurcations), a high synaptic input: output ratio (up to about 9:1), and high synaptic density (a maximum of 12 per micrometre of neurite length). The opposite extreme is represented by sparsely branched eccentric cell collaterals distant from their axons of origin with very little synaptic input and sparse output. Spatially graded lateral inhibition is the apparent outcome of a radially decreasing distribution of inhibitory synapses on the arborizations of eccentric cell collaterals combined with possible decremental signal transmission in the plexus. The synaptic analysis has a bearing on most physiological aspects of lateral inhibition that have been studied in the Limulus eye. Implied in the results is the suggestion that synapse formation is an intrinsic property of the presynaptic element, but that the connectivity is governed by the electrical activity of target neurons.  相似文献   

20.
Inhibition in the eye of Limulus   总被引:4,自引:0,他引:4       下载免费PDF全文
In the compound lateral eye of Limulus each ommatidium functions as a single receptor unit in the discharge of impulses in the optic nerve. Impulses originate in the eccentric cell of each ommatidium and are conducted in its axon, which runs without interruption through an extensive plexus of nerve fibers to become a fiber of the optic nerve. The plexus makes interconnections among the ommatidia, but its exact organization is not understood. The ability of an ommatidium to discharge impulses in the axon of its eccentric cell is reduced by illumination of other ommatidia in its neighborhood: the threshold to light is raised, the number of impulses discharged in response to a suprathreshold flash of light is diminished, and the frequency with which impulses are discharged during steady illumination is decreased. Also, the activity that can be elicited under certain conditions when an ommatidium is in darkness can be inhibited similarly. There is no evidence for the spread of excitatory influences in the eye of Limulus. The inhibitory influence exerted upon an ommatidium that is discharging impulses at a steady rate begins, shortly after the onset of the illumination on neighboring ommatidia, with a sudden deep minimum in the frequency of discharge. After partial recovery, the frequency is maintained at a depressed level until the illumination on the neighboring receptors is turned off, following which there is prompt, though not instantaneous recovery to the original frequency. The inhibition is exerted directly upon the sensitive structure within the ommatidium: it has been observed when the impulses were recorded by a microelectrode thrust into an ommatidium, as well as when they were recorded more proximally in single fibers dissected from the optic nerve. Receptor units of the eye often inhibit one another mutually. This has been observed by recording the activity of two optic nerve fibers simultaneously. The mediation of the inhibitory influence appears to depend upon the integrity of nervous interconnections in the plexus: cutting the lateral connections to an ommatidium abolishes the inhibition exerted upon it. The nature of the influence that is mediated by the plexus and the mechanism whereby it exerts its inhibitory action on the receptor units are not known. The depression of the frequency of the discharge of nerve impulses from an ommatidium increases approximately linearly with the logarithm of the intensity of illumination on receptors in its vicinity. Inhibition of the discharge from an ommatidium is greater the larger the area of the eye illuminated in its vicinity. However, equal increments of area become less effective as the total area is increased. The response of an ommatidium is most effectively inhibited by the illumination of ommatidia that are close to it; the effectiveness diminishes with increasing distance, but may extend for several millimeters. Illumination of a fixed region of the eye at constant intensity produces a depression of the frequency of discharge of impulses from a nearby ommatidium that is approximately constant, irrespective of the level of excitation of the ommatidium. The inhibitory interaction in the eye of Limulus is an integrative process that is important in determining the patterns of nervous activity in the visual system. It is analogous to the inhibitory component of the interaction that takes place in the vertebrate retina. Inhibitory interaction results in the exaggeration of differences in sensory activity from different regions of the eye illuminated at different intensities, thus enhancing visual contrast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号