共查询到20条相似文献,搜索用时 15 毫秒
1.
How do intracellular fluxes respond to dynamically increasing glucose limitation when the physiology changes from strong overflow metabolism near to exclusively maintenance metabolism? Here we investigate this question in a typical industrial, glucose‐limited fed‐batch cultivation with a riboflavin overproducing Bacillus subtilis strain. To resolve dynamic flux changes, a novel approach to 13C flux analysis was developed that is based on recording 13C labeling patterns in free intracellular amino acids. Fluxes are then estimated with stationary flux ratio and iterative isotopomer balancing methods, for which a decomposition of the process into quasi‐steady states and estimation of isotopic steady state 13C labeling patterns was necessary. By this approach, we achieve a temporal resolution of 30–60 min that allows us to resolve the slow metabolic transients that typically occur in such cultivations. In the late process phase we found, most prominently, almost exclusive respiratory metabolism, significantly increased pentose phosphate pathway contribution and a strongly decreased futile cycle through the PEP carboxykinase. As a consequence, higher catabolic NADPH formation occurred than was necessary to satisfy the anabolic demands, suggesting a transhydrogenase‐like mechanism to close the balance of reducing equivalents. Biotechnol. Bioeng. 2010. 105: 795–804. © 2009 Wiley Periodicals, Inc. 相似文献
2.
We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L ‐valine from glucose with a high yield of 0.38 g L ‐valine per gram glucose (0.58 mol L ‐valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L ‐valine production by fed‐batch culture as an example. Through the systems‐level analysis, the source of ATP was found to be important for efficient L ‐valine production. There existed a trade‐off between L ‐valine production and biomass formation, which was optimized for the most efficient L ‐valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed‐batch cultivation strategy allowed production of 32.3 g/L L ‐valine, the highest concentration reported for E. coli. This approach of employing systems‐level analysis of metabolic fluxes in developing fed‐batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts. Biotechnol. Bioeng. 2011; 108:934–946. © 2010 Wiley Periodicals, Inc. 相似文献
3.
Zamboni N Fischer E Muffler A Wyss M Hohmann HP Sauer U 《Biotechnology and bioengineering》2005,89(2):219-232
4.
5.
Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed‐batch mode under non‐stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup—rapid media transition—enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab‐scale stirred‐tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed‐batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short‐term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
6.
Ryosuke Yamada Kazuki Wakita Ryosuke Mitsui Hiroyasu Ogino 《Biotechnology and bioengineering》2017,114(9):2075-2084
7.
Inducible mammalian expression systems are increasingly being used for the production of valuable therapeutics. In such system, maximizing the product yield is achieved by carefully balancing the biomass concentration during the production phase and the specific productivity of the cells. These two factors are largely determined by the availability of nutrients and/or the presence of toxic waste metabolites in the culture environment. Glutamine is one of the most important components of cell culture medium, since this substrate is an important building block and source of energy for biomass and recombinant protein production. Its metabolism, however, ultimately leads to the formation of ammonia, a well known inhibitor of cellular growth and productivity. In this work, we show that nutrient feeding post‐induction can greatly enhance the product yield by alleviating early limitations encountered in batch. Moreover, varying the amount of glutamine in the feed yielded two distinct culture behaviors post‐induction; whereas excess glutamine allowed to reach greater cell concentrations, glutamine‐limited fed‐batch led to increased cell specific productivity. These two conditions also showed distinctive lactate metabolism. To further assess the physiological impact of glutamine levels on the cells, a comparative 13C‐metabolic flux analysis was conducted and a number of key intracellular fluxes were found to be affected by the amount of glutamine present in the feed during the production phase. Such information may provide useful clues for the identification of physiological markers of cell growth and productivity that could further guide the optimization of inducible expression systems. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:535–546, 2014 相似文献
8.
Andrew L. Damiani Q. Peter He Thomas W. Jeffries Jin Wang 《Biotechnology and bioengineering》2015,112(6):1250-1262
9.
Sequential uptake of pentose and hexose sugars that compose lignocellulosic biomass limits the ability of pure microbial cultures to efficiently produce value-added bioproducts. In this work, we used dynamic flux balance modeling to examine the capability of mixed cultures of substrate-selective microbes to improve the utilization of glucose/xylose mixtures and to convert these mixed substrates into products. Co-culture simulations of Escherichia coli strains ALS1008 and ZSC113, engineered for glucose and xylose only uptake respectively, indicated that improvements in batch substrate consumption observed in previous experimental studies resulted primarily from an increase in ZSC113 xylose uptake relative to wild-type E. coli. The E. coli strain ZSC113 engineered for the elimination of glucose uptake was computationally co-cultured with wild-type Saccharomyces cerevisiae, which can only metabolize glucose, to determine if the co-culture was capable of enhanced ethanol production compared to pure cultures of wild-type E. coli and the S. cerevisiae strain RWB218 engineered for combined glucose and xylose uptake. Under the simplifying assumption that both microbes grow optimally under common environmental conditions, optimization of the strain inoculum and the aerobic to anaerobic switching time produced an almost twofold increase in ethanol productivity over the pure cultures. To examine the effect of reduced strain growth rates at non-optimal pH and temperature values, a break even analysis was performed to determine possible reductions in individual strain substrate uptake rates that resulted in the same predicted ethanol productivity as the best pure culture. 相似文献
10.
A genome-scale metabolic network reconstruction for Clostridium acetobutylicum (ATCC 824) was carried out using a new semi-automated reverse engineering algorithm. The network consists of 422 intracellular metabolites involved in 552 reactions and includes 80 membrane transport reactions. The metabolic network illustrates the reliance of clostridia on the urea cycle, intracellular L-glutamate solute pools, and the acetylornithine transaminase for amino acid biosynthesis from the 2-oxoglutarate precursor. The semi-automated reverse engineering algorithm identified discrepancies in reaction network databases that are major obstacles for fully automated network-building algorithms. The proposed semi-automated approach allowed for the conservation of unique clostridial metabolic pathways, such as an incomplete TCA cycle. A thermodynamic analysis was used to determine the physiological conditions under which proposed pathways (e.g., reverse partial TCA cycle and reverse arginine biosynthesis pathway) are feasible. The reconstructed metabolic network was used to create a genome-scale model that correctly characterized the butyrate kinase knock-out and the asolventogenic M5 pSOL1 megaplasmid degenerate strains. Systematic gene knock-out simulations were performed to identify a set of genes encoding clostridial enzymes essential for growth in silico. 相似文献
11.
Fed-batch cultures of recombinant microorganisms have attracted attention as they can separate cell growth stage from cloned-gene expression phase during fermentations. In this work, the effect of different glucose feeding strategies on cell growth and cloned gene expression was studied during aerobic fed-batch fermentations of recombinant yeast, containing the plasmid pRB58. The plasmid contains the yeast SUC2 gene, which codes for the enzyme invertase. Some feeding policies resulted in a constant glucose concentration inside the fermentor, while others deliberately introduced a cyclic variation. The cell mass yield was found to be higher at low glucose concentrations, thus indicating a shift to the more energy-efficient respiratory pathway. The SUC2 gene expression was derepressed at glucose levels below 2 g/L. The response of specific invertase activity to changes in the medium glucose concentration was found to be almost immediate. 相似文献
12.
自20世纪90年代初期诞生以来,代谢工程历经了30年的快速发展。作为代谢工程的首选底盘细胞之一,酿酒酵母细胞工厂已被广泛应用于大量大宗化学品和新型高附加值生物活性物质的生物制造,在能源、医药和环境等领域取得了巨大的突破。近年来,合成生物学、生物信息学以及机器学习等相关技术也极大地促进了代谢工程的技术发展和应用。文中回顾了近30年来酿酒酵母代谢工程重要的技术发展,首先总结了经典代谢工程的常用方法和策略,以及在此基础上发展而来的系统代谢工程和合成生物学驱动的代谢工程技术。最后结合最新技术发展趋势,展望了未来酿酒酵母代谢工程发展的新方向。 相似文献
13.
14.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc. 相似文献
15.
Converti A Arni S Sato S de Carvalho JC Aquarone E 《Biotechnology and bioengineering》2003,84(1):88-95
Simplified modeling based on material balances for biomass, ethanol and substrate was used to describe the kinetics of fed-batch alcohol fermentation of sugarcane blackstrap molasses. Maintenance requirements were previously shown to be of particular significance in this system, owing to the use of massive inoculum to minimize inhibitions; therefore, they were taken into consideration for kinetic modeling. Average values of biomass and ethanol yields, productivities, and substrate consumption rates, calculated at the end of runs performed either at constant or exponentially varying flow rates, demonstrated that all of these parameters were influenced by the initial sugar-feeding rate, F(o)S(o). Under conditions of substrate shortage (F(o)S(o) = 300 g(S) h(-1)), the amount of carbon dioxide produced was higher than that corresponding to the stoichiometry of sucrose fermentation to ethanol, indicating that an appreciable fraction of the carbon source was likely consumed by respiration. Besides, the biomass yields either on substrate, Y(X/S), or ethanol, Y(X/E), as well as the product yield on substrate, Y(E/S), notably decreased. These results are in agreement with the relatively high specific rate of anaerobic substrate consumption for maintenance estimated for this system (m(a) (s) = 0.789 g(S) g(X) (-1) h(-1)), which was responsible for the consumption of more than 70% of the fed carbon source. The proposed equations derived from the Monod model proved to be a useful tool to easily predict the performance of this process. 相似文献
16.
A recombinant yeast plasmid carrying the Ieu2 gene for auxotrophic complementation and a reporter gene for beta-galactosidase under the control of Gal10 promoter was studied in Saccharomyces cerevisiae. Growth, product formation, and plasmid stability were studied in defined, semi-defined, and complex media. The biomass concentration and specific activity were higher in complex medium than in defined medium, which was selective for the growth of plasmid-containing cells, leading to a 10-fold increase in volumetric activity. However, plasmid instability was very high in complex media with 50% plasmid-free cells emerging in the culture within 75 h of cultivation. In order to control instability, the growth rates of the plasmid-containing and plasmid-free cells were determined in semi-defined media, which consisted of defined medium supplemented with different concentrations of yeast extract. Below a critical concentration of yeast extract (0.05 g/L), the plasmid-containing cells had a growth rate advantage over the plasmid-free cells. This was possibly because, at this concentration of yeast extract, the availability of leucine became the rate-determining factor in the specific growth rate of plasmid-free cells. A feeding strategy was designed which maintained a low concentration of the residual yeast extract in the medium and thus continuously provided the plasmid-containing cells with a competitive advantage over the plasmid-free cells. This resulted in high stability as well as high cell density under non-selective conditions, which led to a 10-fold increase in the volumetric activity compared to that achieved in defined selective media. A simple mathematical model was formulated to verify the experimental data. The important state variables and process parameters, i.e., biomass concentration, beta-galactosidase expression, sucrose consumption, yeast extract consumption, and specific growth rates of the two cell populations, were evaluated. These variables and parameters along with the differential equations based on material balances as well as the experimental results obtained were used in a mathematical model for the fed-batch cultivation. These correctly verified the experimental data and clearly illustrated the concept behind the success of the fed-batch strategy under yeast extract starvation. 相似文献
17.
Widiastuti H Kim JY Selvarasu S Karimi IA Kim H Seo JS Lee DY 《Biotechnology and bioengineering》2011,108(3):655-665
Bioethanol has been recognized as a potential alternative energy source. Among various ethanol-producing microbes, Zymomonas mobilis has acquired special attention due to its higher ethanol yield and tolerance. However, cellular metabolism in Z. mobilis remains unclear, hindering its practical application for bioethanol production. To elucidate such physiological characteristics, we reconstructed and validated a genome-scale metabolic network (iZM363) of Z. mobilis ATCC31821 (ZM4) based on its annotated genome and biochemical information. The phenotypic behaviors and metabolic states predicted by our genome-scale model were highly consistent with the experimental observations of Z. mobilis ZM4 strain growing on glucose as well as NMR-measured intracellular fluxes of an engineered strain utilizing glucose, fructose, and xylose. Subsequent comparative analysis with Escherichia coli and Saccharomyces cerevisiae as well as gene essentiality and flux coupling analyses have also confirmed the functional role of pdc and adh genes in the ethanologenic activity of Z. mobilis, thus leading to better understanding of this natural ethanol producer. In future, the current model could be employed to identify potential cell engineering targets, thereby enhancing the productivity of ethanol in Z. mobilis. 相似文献
18.
Emrah
zcan Merve Seven Burcu irin Tunahan akr Emrah Nikerel Bas Teusink Ebru Toksoy
ner 《Biotechnology and bioengineering》2021,118(1):223-237
In this study, we have investigated the cheese starter culture as a microbial community through a question: can the metabolic behaviour of a co‐culture be explained by the characterized individual organism that constituted the co‐culture? To address this question, the dairy‐origin lactic acid bacteria Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus and Leuconostoc mesenteroides, commonly used in cheese starter cultures, were grown in pure and four different co‐cultures. We used a dynamic metabolic modelling approach based on the integration of the genome‐scale metabolic networks of the involved organisms to simulate the co‐cultures. The strain‐specific kinetic parameters of dynamic models were estimated using the pure culture experiments and they were subsequently applied to co‐culture models. Biomass, carbon source, lactic acid and most of the amino acid concentration profiles simulated by the co‐culture models fit closely to the experimental results and the co‐culture models explained the mechanisms behind the dynamic microbial abundance. We then applied the co‐culture models to estimate further information on the co‐cultures that could not be obtained by the experimental method used. This includes estimation of the profile of various metabolites in the co‐culture medium such as flavour compounds produced and the individual organism level metabolic exchange flux profiles, which revealed the potential metabolic interactions between organisms in the co‐cultures. 相似文献
19.
Costenoble R Müller D Barl T van Gulik WM van Winden WA Reuss M Heijnen JJ 《FEMS yeast research》2007,7(4):511-526
This study addresses the question of whether observable changes in fluxes in the primary carbon metabolism of Saccharomyces cerevisiae occur between the different phases of the cell division cycle. To detect such changes by metabolic flux analysis, a 13C-labeling experiment was performed with a fed-batch culture inoculated with a partially synchronized cell population obtained through centrifugal elutriation. Such a culture exhibits dynamic changes in the fractions of cells in different cell cycle phases over time. The mass isotopomer distributions of free intracellular metabolites in central carbon metabolism were measured by liquid chromatography-mass spectrometry. For four time points during the culture, these distributions were used to obtain the best estimates for the metabolic fluxes. The obtained flux fits suggested that the optimally fitted split ratio for the pentose phosphate pathway changed by almost a factor of 2 up and down around a value of 0.27 during the experiment. Statistical analysis revealed that some of the fitted flux distributions for different time points were significantly different from each other, indicating that cell cycle-dependent variations in cytosolic metabolic fluxes indeed occurred. 相似文献
20.
Kleijn RJ Geertman JM Nfor BK Ras C Schipper D Pronk JT Heijnen JJ van Maris AJ van Winden WA 《FEMS yeast research》2007,7(2):216-231
This study focuses on unravelling the carbon and redox metabolism of a previously developed glycerol-overproducing Saccharomyces cerevisiae strain with deletions in the structural genes encoding triosephosphate isomerase (TPI1), the external mitochondrial NADH dehydrogenases (NDE1 and NDE2) and the respiratory chain-linked glycerol-3-phosphate dehydrogenase (GUT2). Two methods were used for analysis of metabolic fluxes: metabolite balancing and (13)C-labelling-based metabolic flux analysis. The isotopic enrichment of intracellular primary metabolites was measured both directly (liquid chromatography-MS) and indirectly through proteinogenic amino acids (nuclear magnetic resonance and gas chromatography-MS). Because flux sensitivity around several important metabolic nodes proved to be dependent on the applied technique, the combination of the three (13)C quantification techniques generated the most accurate overall flux pattern. When combined, the measured conversion rates and (13)C-labelling data provided evidence that a combination of assimilatory metabolism and pentose phosphate pathway activity diverted some of the carbon away from glycerol formation. Metabolite balancing indicated that this results in excess cytosolic NADH, suggesting the presence of a cytosolic NADH sink in addition to those that were deleted. The exchange flux of four-carbon dicarboxylic acids across the mitochondrial membrane, as measured by the (13)C-labelling data, supports a possible role of a malate/aspartate or malate/oxaloacetate redox shuttle in the transfer of these redox equivalents from the cytosol to the mitochondrial matrix. 相似文献