首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aleurone layers, with testa attached, were prepared from degermed, decorticated barley with the aid of a fungal enzyme preparation. The preparations appeared intact under the scanning electron microscope. By using antibiotics only in an early stage preparations were obtained uncontaminated by micro-organisms and which, when incubated under optimal conditions with gibberellic acid, GA3, produced near-maximal amounts of α-amylase. The enzyme accumulated in the tissue before it was released into the incubation medium. Daily replacement of the incubation medium, containing GA3, depressed the quantity of α-amylase produced. α-Amylase was also produced in response to gibberellins GA1, GA4 and GA7 and, to a much lesser extent, helminthosporol and helminthosporic acid. A range of other substances, reported elsewhere to induce α-amylase formation, failed to do so in these trials. At some concentrations, glutamine marginally enhanced the quantity of enzyme formed during prolonged incubations. It is confirmed that α-glucosidase occurs in the aleurone layer and embryo of ungerminated barley, and increases in amount during germination. GA3 is shown to enhance this increase. When embryos arc burnt, to prevent gibberellin formation, no rise in α-glucosidase levels occurs unless GA3 is supplied to the grains. As the activity of α-glucosidase and other enzymes have been determined as ‘α-amylase’ by some assay methods, their alterations in activity in response to GA3 necessitates a re-evaluation of the evidence for de novo) synthesis of α-amylase in aleurone tissue.  相似文献   

2.
Some glycosidases in light-grown cucumber (Cucumis sativus L. cv. Aonaga-jibae) hypocotyl sections were examined with respect to their localization and relation to endogenous and IAA-induced growth. Frozen-thawed sections were used directly for measurement of enzyme activities, and β-glucosidase, α- and β-galactosidases and β-xylosidase were assayed by using p- or o-nitro-phenylglycopyranosides as substrates. The order of the activity of these enzymes were β -glucosidase > β -galactosidase =α-galactosidase > β-xylosidase. No activity of α-glucosidase was detected. High glycosidase activities were found in the youngest region of the hypocotyl, where the endogenous growth rate was highest. However, there was no significant difference in the activities of this region between seedlings at different growth stages. Among the enzymes tested, β -glucosidase showed a high correlation with the endogenous growth rate. β-glucosidase was found to be mostly associated with the cell wall fraction, while β-galactosidase was rather found in the soluble fraction of the cell. Separation of the epidermis from the section showed that a very high activity of β-glucosidase was associated with the epidermis. In both whole sections and isolated cell wall fractions, IAA was shown to have no effect on the activities of β-glucosidase and β-galactosidase.  相似文献   

3.
Glycosidases play an important role in a wide range of physiological and pathological conditions, and have become potential targets for the discovery and development of agents useful for the treatment of diseases such as diabetes, cancer, influenza, and even AIDS. In this study, several benzimidazole derivatives were prepared from o-phenylenediamine and aromatic and heteroaromatic carboxaldehydes in very good yields, using PdCl2(CH3CN)2 as the most efficient catalyst. Synthesized compounds were assayed for their activity on yeast and rat intestinal α-glucosidase inhibition and cytotoxic activity against colon carcinoma cell line HT-29. Compound 3e exhibited 95.6% and 75.3% inhibition of yeast and rat intestinal α-glucosidase enzyme, while showing 74.8% cytotoxic activity against the HT-29 cell line at primary screening concentrations of 2.1?mM for yeast and rat intestinal α-glucosidase enzyme and 0.2?mM for cytotoxic activity against the HT-29 cell line, respectively. Compound 3c displayed 76% and 34.4% inhibition of yeast and rat intestinal α-glucosidase enzyme, and 80.4% cytotoxic activity against the HT-29 cell line at similar primary screening concentrations. The IC50 value for the most potent intestinal α-glucosidase inhibitor compound 3e was found to be 99.4?μM. The IC50 values for the most active cytotoxic compounds 3c and 3e were 82?μM and 98.8?μM, respectively. Both compounds displayed significant antihyperglycemic activity in starch-induced postprandial hyperglycemia in rats. This is the first report assigning yeast and rat intestinal α-glucosidase enzyme inhibition, cytotoxic activity against the HT-29 cell line, and antihyperglycemic activity to benzimidazole compounds 3c and 3e.  相似文献   

4.
Some properties of the inducible α-glucosidase system of Mucor rouxii were investigated. This enzymatic activity was induced after resuspending glucose-grown cells in a maltose-supplemented medium. The wall-bound activity of α-glucosidase was determined by using intact cells in the enzymatic assay; this activity represented from 80 to 90% of the total activity present in the induced cells. The addition of glucose before, or during, the induction period repressed α-glucosidase synthesis. α-Glucosidase induction was tested under aerobic and anaerobic conditions. It was found that the enzyme synthesis and the appearance of wall-bound activity were not affected by changing the gaseous environment. On the other hand, it was observed that anaerobically grown yeast-like cells were much less efficient than aerobic mycelia to develop wall-bound α-glucosidase activity. This could explain earlier observations about the incapacity of M. rouxii to utilize maltose as a substrate for anaerobic growth. This idea was strengthened by the fact that, if an anaerobic culture was induced to develop under a mycelial morphology by adding to the medium the chemical agent EDTA, these cells also acquired the capacity to grow on maltose and concomitantly possessed wall-bound α-glucosidase activity. The relevance of the structure of the cell wall on the capacity of M. rouxii to metabolize maltose is discussed.  相似文献   

5.
Apodiphus amygdali or stink bug of fruit trees is one of the polyphagous species from pentatomid bugs that attack many of fruit trees and ornamental trees. In the current study, activities of α- and β-glucosidases were measured in the midgut of A. amygdali adults. It was found the higher activity of β-glucosidase than α-glucosidase in addition to different enzymatic properties of the enzymes. Optimal pHs for enzymatic activities were found to be 5 and 7 for α- and β-glucosidases, respectively. Values regarding optimal temperatures were obtained at 30?°C for both α- and β-glucosidases. Among ions used on α-glucosidase activity, K+ and Ca2+ significantly increased enzymatic activity, Na+ had no effect, and Cu2+, Fe2+ and Mg2+ had the significant negative effects on the enzyme activity. Ca2+ and Fe2+ increased β-glucosidase activity in the midgut of A. amygdali, Na+ had no effect, and other ions significantly decreased the enzyme activity. Ethylene glycol-bis (β-aminoethylether) N,N,N?,N-tetraacetic acid (EGTA), citric acid, ethylenediamide tetraacetic acid (EDTA) and sodium dodecylsulfate (SDS) significantly decreased α-glucosidase activity but EGTA, triethylenetetramine hexaacetic acid (TTHA), EDTA and SDS decreased β-glucosidase activity in the midgut of A. amygdali. Characterisation of digestive enzymes, especially the effect of inhibitors on enzyme activity, could be useful for better understanding of enzyme roles in nutritional physiology of insects in addition to reach safe and useful controls of insect pests.  相似文献   

6.
β-Glucosidase and β-galactosidase activity profile tested in different seeds during 24 h germination revealed reasonably high levels of activity inVigna radiata, Cicer arietinum, andTrigonella foenum-graecum. In all seeds tested, β-galactosidase activity was, in general, higher than that of β-glucosidase.T. foenum-graecum seedlings exhibited maximal total and specific activities for both the enzymes during 72 h germination. Se supplementation as Na2SeO3 up to 0.75 ppm was found to be beneficial to growth and revealed selective enhancement of β-galactosidase activity by 40% at 0.5 ppm Se. The activities of both the enzymes drastically decreased at 1.0 ppm level of Se supplementation. On the contrary, addition of Na2SeO3 in vitro up to 1 ppm to the enzyme extracts did not influence these activities. Hydrolytic rates of β-glucosidase in both control and Se-supplemented groups were enhanced by 20% with 0.05M glycerol in the medium and 30% at 0.1M glycerol. The rates were marginally higher in Se-supplemented seedlings than the controls, irrespective of added glycerol in the medium. In contrast, hydrolysis by β-galactosidase showed a trend of decrease in Se-supplemented seedlings compared to the control, when glycerol was present in the medium. Addition of Se in vitro in the assay medium showed no difference in the hydrolytic rate by β-galactosidase when compared to control, while the activity of β-glucosidase declined by 50%. Se-grown seedlings showed an enhancement of transglucosidation rate by 40% in the presence of 0.1M glycerol. The study reveals a differential response to Se among the β-galactosidase and β-glucosidase ofT. foenumgraecum with increase in the levels of β-galactosidase activity.  相似文献   

7.
Adults of Quesada gigas (Hemiptera: Cicadidae) have a major α-glucosidase bound to the perimicrovillar membranes, which are lipoprotein membranes that surround the midgut cell microvilli in Hemiptera and Thysanoptera. Determination of the spatial distribution of α-glucosidases in Q. gigas midgut showed that this activity is not equally distributed between soluble and membrane-bound isoforms. The major membrane-bound enzyme was solubilized in the detergent Triton X-100 and purified to homogeneity by means of gel filtration on Sephacryl S-100, and ion-exchange on High Q and Mono Q columns. The purified α-glucosidase is a protein with a pH optimum of 6.0 against the synthetic substrate p-nitrophenyl α-d-glucoside and Mr of 61,000 (SDS-PAGE). Taking into account VMax/KM ratios, the enzyme is more active on maltose than sucrose and prefers oligomaltodextrins up to maltopentaose, with lower efficiency for longer chain maltodextrins. The Q. gigas α-glucosidase was immunolocalized in perimicrovillar membranes by using a monospecific polyclonal antibody raised against the purified enzyme from Dysdercus peruvianus. The role of this enzyme in xylem fluid digestion and its possible involvement in osmoregulation is discussed.  相似文献   

8.
ABSTRACT Cells of Entamoeba histolytica grown over a period of four days contained NADP+-dependent alcohol dehydrogenase exclusively inside the cells. No activity of this enzyme could be found in the growth medium after harvesting the cells. Under the same conditions, acid phosphatase, β-N-acetylglucosaminidase, esterase, α-glucosidase, and different amylases of the parasite were found both inside the cells and in the medium. The activities present in the cell homogenate and in the medium before and after growth of the amoebas were partially separated by gel filtration on Sephadex G150 and G75, respectively. The comparison of the elution diagrams revealed that NADP+-dependent alcohol dehydrogenase, acid phosphatase, esterase, and amylases occurred as multiple forms inside the cells. These activities, as well as β-N-acetylglucosaminidase and α-glucosidase, were released into the extracellular environment to a different degree. The enzymes originating from the parasite were identified and distinguished from those of the ingredients of the growth medium according to their molecular mass and pH optimum. Furthermore, the amoebic origin of the secreted enzymes was shown on the basis of their inhibition by antibodies prepared against the supernatant fraction of the homogenate.  相似文献   

9.
Several microorganisms capable of utilizing 1-aminocyclopropane-1-carboxylate (ACPC) were isolated from soil. A bacterium which belongs to Pseudomonas accumulated cellular α-aminobutyrate with consumption of ACPC and cells incubated with ACPC medium had the activity deaminating the substrate to form α-ketobutyrate. An enzyme, ACPC deaminase, was highly purified and its molecular weight, substrate specificity and absorption spectrum were investigated. These results suggested that this enzyme was a pyridoxal 5′-phosphate enzyme which has the molecular weight of 104000 and high specificity for ACPC, Km= 1.5 mM. A yeast, Hansenula saturnus, is also capable of forming ACPC deaminase, which has a lower molecular weight, 69000, and higher Km value, 2.6 mM.  相似文献   

10.
The pathogenicity of Botrytis cinerea has been found to correlate positively with the β-glucosidase activity. In this report, the relationship between the induction of β-glucosidase and the components of host plant tissues was studied by the use of tissue fractions and cellulose-related compounds.

The most active enzyme induced by the crude fiber fraction and Avicel was β-glucosidase, among the cell wall degrading enzymes tested. The β-glucosidase was very inducible in the strains with strong pathogenicity, and intensively degraded the fiber fraction made from apple fruit tissues. The same degradation of the cell wall fraction was demonstrated with the purified enzyme.  相似文献   

11.
The inhibition of β-glucosidase in Trichoderma reesei C30 cellulase by D -glucose, its isomers, and derivatives was studied using cellobiose and ρ-nitrophenyl-β-glucoside (PNPG) as substrates for determining enzyme activity. The enzymatic hydrolysis of both substrates was inhibited competitively by glucose with approximate Ki values of 0.5mM and 8.7mM for cellobiose and PNPG as substrate, respectively. This inhibition by glucose was maximal at pH 4.8, and no inhibition was observed at pH 6.5 and above. The α anomer of glucose inhibited β-glucosidase to a greater extent than did the β form. Compared with D -glucose, L -glucose, D -glucose-6-phosphate, and D -glucose-1-phosphate inhibited the enzyme to a much lesser extent, unlike D -glucose-L -cysteine which was almost as inhibitory as glucose itself when cellobiose was used as substrate. Fructose (2?100mM) was found to be a poor inhibitor of the enzyme. It is suggested that high rates of cellobiose hydrolysis catalyzed by β-glucosidase may be prolonged by converting the reaction product glucose to fructose using a suitable preparation of glucose isomerase.  相似文献   

12.
In this paper we studied the conditions for the production of β-glucosidase from T. reesei QM9414 in batch cultures using milled and sieved wheat straw as sole carbon source. High β-glucosidase production in the presence of wheat straw, a more realistic substrate than commercial cellulose, was obtained. The influence of particle size of wheat straw on β-glucosidase production in cell-free, cell and cell-wall extracts was studied. The particle size of wheat straw notably influenced enzyme production in cell and extramycelial extracts but it was less important with respect to the cell wall bound enzyme. β-glucosidase production was studied along of the fermentation. The results suggest a close relation between β-glucosidase from cell extract and extramycelial broth; geneticin levels of inhibition of β-glucosidase biosynthesis in both fractions were similar, a fact that suggests a common origin for the enzyme. Kinetic parameters for β-glucosidase from cell free and cell extracts were Vmax = 0.28 μmol/min/mg, KM = 0.91 mM and Vmax = 0.095 μmol/min/mg, KM = 0.39 mM respectively. Kinetic parameters for β-glucosidase from cell-wall could not be calculated because experimental data did not fit the different monosubstrate equations.  相似文献   

13.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   

14.
Two kinds of αglucosidase which were homogeneous in disc electrophoretic and ultra-centrifugal analysis were isolated from rice seeds by means of ammonium sulfate fractionation and CM-cellulose, Sephadex G–100 and DEAE-cellulose column chromatography and designated as α-glucosidase I and α-glucosidase II.

Both α-glucosidases hydrolyzed maltose and soluble starch to glucose and showed same optimal pH (4.0) on the both substrates. In addition, both enzymes acted on various α-linked gluco-oligosaccharides and soluble starch but little or not on α-linked hetero-glucosides and α-l,6-glucan (dextran).

Activity of the enzymes on maltose and soluble starch was inhibited by Tris and erythritol. α-Glucosidase II was more sensitive to the inhibitors than α-glucosidase I.

Km value for maltose was 1.1 mM for α-glucosidase I and 2.0 mM for α-glucosidase II.  相似文献   

15.
We have identified and disrupted the gene coding for α-glucosidase II in Dictyostelium discoideum. This enzyme is responsible for removing two α1,3-linked glucose residues from N-linked oligosaccharides on newly synthesized glycoproteins. Mutagenesis by restriction enzyme-mediated integration (REMI) generated a clone, DG1033, which grows well but forms abnormal fruiting bodies with short, thick stalks. The strain lacks α-glucosidase II activity and makes incompletely processed N-linked oligosaccharides that are abnormally large and have fewer sulfate and phosphate esters. The morphological, enzymatic, and oligosaccharide profile phenotypes of the disruption mutant are all recapitulated by a targeted disruption of the normal gene. Furthermore, all of these defects are corrected in cells transformed with a normal, full-length copy of the gene. The phenotypic characteristics of DG1033 as well as chromosomal mapping of the disrupted gene indicate that it is the site of the previously characterized modA mutation. The Dictyostelium gene is highly homologous to α-glucosidase II genes in the human and the pig, C. elegans, and yeast. Although various cell lines have been reported to be defective in α-glucosidase II activity, disruption of the Dictyostelium gene gives the first example of a clear developmental phenotype associated with loss of this enzyme. Dev. Genet. 21:177–186, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
The fungal strain Mortierella alliacea YN-15 is an arachidonic acid producer that assimilates soluble starch despite having undetectable α-amylase activity. Here, a α-glucosidase responsible for the starch hydrolysis was purified from the culture broth through four-step column chromatography. Maltose and other oligosaccharides were less preferentially hydrolyzed and were used as a glucosyl donor for transglucosylation by the enzyme, demonstrating distinct substrate specificity as a fungal α-glucosidase. The purified enzyme consisted of two heterosubunits of 61 and 31 kDa that were not linked by a covalent bond but stably aggregated to each other even at a high salt concentration (0.5 M), and behaved like a single 92-kDa component in gel-filtration chromatography. The hydrolytic activity on maltose reached a maximum at 55°C and in a pH range of 5.0-6.0, and in the presence of ethanol, the transglucosylation reaction to form ethyl-α-D-glucoside was optimal at pH 5.0 and a temperature range of 45-50°C.  相似文献   

17.
α-Glucosidase was detected in four wild-type amylolytic strains belonging to the Bacillus genus. The strains showed α-glucosidase activity in extracellular and membrane-bound fractions. Kinitic studies of the α-glucosidase synthesis in the batch cultures of four strains of the Bacillus genus showed two profiles: partially and totally growth-linked synthesis. The presence of different activities and production profiles of α-glucosidase in the strains at high or low glucose concentrations in the medium would indicate that α-glucosidase may have a role in the regulation of the metabolism of α-polysaccharides.  相似文献   

18.
Using a model system, the activities of α-L-arabinofuranosidase, β-glucosidase, and α-L-rhamonopyranosidase were determined in 32 strains of yeasts belonging to the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, Saccharomyces, Torulaspora and Brettanomyces (10 strains); and seven strains of the bacterium Leuconostoc oenos. Only one Saccharomyces strain exhibited β-glucosidase activity, but several non-Saccharomyces yeast species showed activity of this enzyme. Aureobasidium pullulans hydrolyzed α-L-arabinofuranoside, β-glucoside, and α-L-rhamnopyranoside. Eight Brettanomyces strains had β-glucosidase activity. Location of enzyme activity was determined for those species with enzymatic activity. The majority of β-glucosidase activity was located in the whole cell fraction, with smaller amounts found in permeabilized cells and released into the growth medium. Aureobasidium pullulans hydrolyzed glycosides found in grapes. Received 02 February 1999/ Accepted in revised form 26 June 1999  相似文献   

19.
An acid α-amylase hyperproducing strain, designated as MIR-61, was isolated in a screening procedure from South American soil samples. MIR-61, a 60°C thermoresistant strain, was identified using 98 biochemical and morphological tests and characterized as Bacillus licheniformis by numerical taxonomy. Batch cultures of B. licheniformis MIR-61 showed extracellular α-amylase and α-glucosidase activities during the exponential growth phase. The production of α-amylase was studied at free and constant pH values at 37 and 45°C. Maximum α-amylase activity (4,767 kU/dm3 in a liquid medium) was detected at 45°C at a constant pH (7.0) in the late exponential phase. The α-amylase production by B. licheniformis MIR-61 is 10 to 300 times higher than the enzyme production reported in strains of the same species. Optimum α-amylase activity was found at 50 to 67°C in an acid pH range from 5.5 to 6.0. These properties would allow its use in starch industry processes.  相似文献   

20.
The effect of several carbon sources on the production of mycelial-bound β-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated β-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The β-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50°C, respectively. The purified enzyme was thermostable up to 60 min in water at 55°C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60°C. The enzyme hydrolyzed p-nitrophenyl-β-D-glucopyranoside, p-nitrophenyl-β-Dgalactopyranoside, p-nitrophenyl-β-D-fucopyranoside, p-nitrophenyl-β-D-xylopyranoside, o-nitrophenyl-β-Dgalactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-β-Dfucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude β-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea β-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号