首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.  相似文献   

2.
The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition.The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme) with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.  相似文献   

3.
Qing Shao 《Molecular simulation》2019,45(14-15):1211-1222
ABSTRACT

This review introduces a computational avenue towards understanding and design of zwitterionic anti-biofouling materials. Biofouling means nonspecific adsorption of proteins, cells, and bacteria on materials and devices. It can sabotage materials functions and bring detrimental effects on the biological systems. Various anti-biofouling materials have been developed and zwitterionic materials emerge as promising candidates recently. The design and understanding of zwitterionic anti-biofouling materials rely on the answers of three fundamental questions: (a) what molecular properties govern the anti-biofouling performance of materials, (b) what is the structure–property-anti-biofouling relationship for materials, and (c) how to identify anti-biofouling materials based on the revealed mechanisms? This paper discussed the efforts of answering the three questions using molecular simulations. We first discuss the simulations that revealed the importance of hydration in the anti-biofouling performance of materials and why this mechanism leads to the discovery of zwitterionic anti-biofouling materials, then the simulations that investigated structure-properties-performance relationships of zwitterionic anti-biofouling materials, and the development of computational approaches that can identify zwitterionic anti-biofouling molecules. Finally, we discuss the opportunities in understanding and design of anti-biofouling biomaterials using computer simulations.  相似文献   

4.
5.
Organic solar cells (OSCs) made of donor/acceptor bulk‐heterojunction active layers have been of widespread interest in converting sunlight to electricity. Characterizing of the complex morphology at multiple length scales of polymer:nonfullerene small molecular acceptor (SMA) systems remains largely unexplored. Through detailed characterizations (hard/soft X‐ray scattering) of the record‐efficiency polymer:SMA system with a close analog, quantitative morphological parameters are related to the device performance parameters and fundamental morphology–performance relationships that explain why additive use and thermal annealing are needed for optimized performance are established. A linear correlation between the average purity variations at small length scale (≈10 nm) and photovoltaic device characteristics across all processing protocols is observed in ≈12%‐efficiency polymer:SMA systems. In addition, molecular interactions as reflected by the estimated Flory–Huggins interaction parameters are used to provide context of the room temperature morphology results. Comparison with results from annealed devices suggests that the two SMA systems compared show upper and lower critical solution temperature behavior, respectively. The in‐depth understanding of the complex multilength scale nonfullerene OSC morphology may guide the device optimization and new materials development and indicates that thermodynamic properties of materials systems should be studied in more detail to aid in designing optimized protocols efficiently.  相似文献   

6.
Currently, tremendous efforts are being devoted to develop high‐performance electrochemical energy‐storage materials and devices. Conventional electrochemical energy‐storage systems are confronted with great challenges to achieve high energy density, long cycle‐life, excellent biocompatibility and environmental friendliness. The biological energy metabolism and storage systems have appealing merits of high efficiency, sophisticated regulation, clean and renewability, and the rational design and fabrication of advanced electrochemical energy‐storage materials and smart devices inspired by nature have made some breakthrough progresses, recently. In this review, we summarize the latest developments in the field of nature‐inspired electrochemical energy‐storage materials and devices. Specifically, the nature‐inspired exploration, preparation and modification of electrochemical energy‐storage related materials including the active materials, binders, and separators are introduced. Furthermore, nature‐inspired design and fabrication of smart energy‐storage devices such as self‐healing supercapacitors, supercapacitors with ultrahigh operating voltage, and self‐rechargeable batteries are also discussed. The review aims to provide insights and expanded research perspectives for further study in this exciting field based on our comprehensive discussions.  相似文献   

7.
Active transport in cells, utilizing molecular motors like kinesin and myosin, provides the inspiration for the integration of active transport into synthetic devices. Hybrid devices, employing motor proteins in a synthetic environment, are the first prototypes of molecular shuttles. Here the basic characteristics of motor proteins are discussed from an engineering point of view, and the experiments aimed at incorporating motor proteins, such as myosins and kinesins, into devices are reviewed. The key problems for the construction of a molecular shuttle are: guiding the direction of motion, controlling the speed, and loading and unloading of cargo. Various techniques, relying on surface topography and chemistry as well as flow fields and electric fields, have been developed to guide the movement of molecular shuttles on surfaces. The control of ATP concentration, acting as a fuel supply, can serve as a means to control the speed of movement. The loading process requires the coupling of cargo to the shuttle, ideally by a strong and specific link. Applications of molecular shuttles can be envisioned, e.g. in the field of nano-electro-mechanical systems (NEMS), where scaling laws favor active transport over fluid flow, and in the bottom-up assembly of novel materials.  相似文献   

8.
The development of energy storage devices with higher energy and power outputs, and long cycling stability is urgently required in the pursuit of the expanding challenges of electrical energy storage. The utilization of biologically renewable redox compounds holds a great potential in designing sustainable energy storage systems and contributes in reducing the dependence on fossil fuels for energy materials. Quinones are the principal redox centers in natural organic materials and play a key role as charge storage electrode materials because of their abundance, multiple forms and integration into the materials flow through the biosphere. Electrical energy storage devices and systems can be significantly improved by the combination of scalable quinone‐based biomaterials with good electronic conductors. This review uses recent examples to show how biopolymers are providing new directions in the development of renewable biohybrid electrodes for energy storage devices.  相似文献   

9.
Many living organisms make use of diverse amyloid proteins as functional building blocks to fulfill a variety of physiological applications. This fact, along with the intrinsic self-assembly and outstanding material properties of amyloids, has prompted a significant amount of research in the synthetic design of functional amyloids to form diverse nanoarchitectures, molecular materials, and hybrid or composite materials. In particular, a new research paradigm has recently been advanced that uses synthetic biology to harness functional amyloids with cells as living materials or functional devices. Here we outline important progress in the synthetic design of functional amyloids, in the context of both non-living and living systems. We propose several important tools and underline emerging techniques and principles that might be useful in advancing the future synthetic design of functional amyloids.  相似文献   

10.
Chip devices were introduced in chemistry and molecular biology to improve the read-out of information from molecular systems by efficient analytical procedures and to organize automated experiments. Biochips and chip reactor systems are of interest for cellular processes, too, and can be regarded as components in interfaces for the information exchange between living nature and digital electronic systems. In this minireview, different types of chip reactors for biotechnological applications like nanotiterplates, chip thermocyclers and devices for segmented flow operations are discussed. Finally, an outlook is given on the application of chip reactor systems, which are promising tools for automated experiments with highly parallelized screening procedures, for artificial microcompartmentation, cell analogue systems, micro-ecological studies, investigations on modulated morphogenesis, and for a bioanalogue molecular nanotechnology.  相似文献   

11.
We present the promising perspectives offered by the combination of carbon nanotube-based electronics and molecular nanomagnetism. The transport properties of carbon nanotubes are first described, with particular attention to the working principles of two devices that can be expected to play a major role in merging the two fields. We then detail the fabrication steps needed for nanotube-based devices that shall be considered when developing strategies for hybrid devices. Finally, we discuss the possible chemical routes to the creation of molecular nanomagnets/carbon-nanotube hybrid devices, highlighting the fundamental requirements for the creation of working systems and for the observation of spin effects on the transport properties of carbon nanotubes.  相似文献   

12.
Over the years, polymers have attracted a great deal of interest because they offer a unique platform for the development of materials in fields as diverse as biomedicine and packaging. Many of these purposes use polymers that had been developed for totally different applications. Recently, however, chemical tailoring and molecular and supramolecular control of the chemistry and, thus, the physical and biological response have become a key interest of many researchers. In particular, systems that operate in aqueous media have become an intensely researched field. This is mostly because many devices must be biocompatible, which implies that they have to function in aqueous solutions. Over the past few years, new approaches for mimicking cell surfaces, for generating biocompatible and bioactive drug delivery systems, and for directed targeting have been developed. One recent development is polymeric systems with an enhanced biofunctionality, such as amphiphilic block copolymers that can act as mimetics for biological membranes. Because there are virtually no limits to combinations of monomers, biological and synthetic building blocks, ligands, receptors, and other proteins, polymer hybrid materials show a great promise for applications in biomedicine and biotechnology.  相似文献   

13.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   

14.
In the past decade among the main developments in the field of bionanotechnology is the application of proteins in devices. Research focuses on the modification of enzyme systems by means of chemical and physical tools in order to achieve full control of their function and to employ them for specific tasks. Membrane protein channels are intriguing biological devices as they allow the recognition and passage of a variety of macromolecules through an otherwise impermeable lipid bilayer. Hence, membrane proteins can be used as sensory devices for detection or as molecular nanovalves to allow for the controlled release of molecules. Here, we discuss the structure and function of three different channel proteins that mediate the membrane passage of macromolecules using different mechanisms. These systems are described in a comparative manner and an overview is provided of the technological advances in employing these proteins in external (or human) controllable devices.  相似文献   

15.
In this article, we will review and highlight some recent computational work on enantioselective adsorption and catalysis in zeolites and metal–organic frameworks. The design, development and understanding of chiral structures will help expand the utility of nanoporous materials into chiral technology. The highlighted works are examples of how molecular simulations can provide a fundamental understanding of chirality in nanoporous materials. This understanding is essential to help in the design and development of next-generation enantioselective separation devices and catalysts.  相似文献   

16.
Neuroscience nanotechnology: progress, opportunities and challenges   总被引:1,自引:0,他引:1  
Nanotechnologies exploit materials and devices with a functional organization that has been engineered at the nanometre scale. The application of nanotechnology in cell biology and physiology enables targeted interactions at a fundamental molecular level. In neuroscience, this entails specific interactions with neurons and glial cells. Examples of current research include technologies that are designed to better interact with neural cells, advanced molecular imaging technologies, materials and hybrid molecules used in neural regeneration, neuroprotection, and targeted delivery of drugs and small molecules across the blood-brain barrier.  相似文献   

17.
Bio-nanotechnology is a new interdisciplinary R&D area that integrates engineering and physical science with biology through the development of multifunctional devices and systems, focusing biology inspired processes or their applications, in particular in medical biotechnology. DNA based nanotechnology, in many ways, has been one of the most intensively studied fields in recent years that involves the use and the creation of bio-inspired materials and their technologies for highly selective biosensing, nanoarchitecture engineering and nanoelectronics. Increasing researches have been offered to a fundamental understanding how the interactions between the nanoparticles and DNA molecules could alter DNA molecular structure and its biochemical activities. This minor review describes the mechanisms of the nanoparticle–DNA binding and molecular interactions. We present recent discoveries and research progresses how the nanoparticle–DNA binding could vary DNA molecular structure, DNA detection, and gene therapy. We report a few case studies associated with the application of the nanoparticle–DNA binding devices in medical detection and biotechnology. The potential impacts of the nanoparticles via DNA binding on toxicity of the microorganisms are briefly discussed. The nanoparticle–DNA interactions and their impact on molecular and microbial functionalities have only drown attention in recent a few years. The information presented in this review can provide useful references for further studies on biomedical science and technology.  相似文献   

18.

The mechanical properties of pristine and defective Si-based hybrid sheets are studied using molecular dynamics calculations for a temperature ranging from 100 to 800 K, in conjunction with a variable strain rate. When increasing temperature, the melting phase of the hybrids occurs from the solid to the liquid phase, while the increase in the strain rate enhances their elastic parameters. The absence of plastic stage reveals that the fracture pattern is brittle in these 2D materials. Under the uniaxial loading, the systems stretch, resulting in the failure of the crystalline skeletons that lose their rigidity with anisotropic behavior observed only for SiC. In defective hybrids, the point defects reduce the values of fracture strength and strain without affecting the brittle behavior of the sheets. The results impart that coupling high temperature to SiC material offers new possibilities for MEMS devices, whereas SiGe is a promising candidate for microelectronic devices.

  相似文献   

19.
Mimicking nature's approach in creating devices with similar functional complexity is one of the ultimate goals of scientists and engineers. The remarkable elegance of these naturally evolved structures originates from bottom-up self-assembly processes. The seamless integration of top-down fabrication and bottom-up synthesis is the challenge for achieving intricate artificial systems. In this paper, technologies necessary for guided bottom-up assembly such as molecular manipulation, molecular binding, and the self assembling of molecules will be reviewed. In addition, the current progress of synthesizing mechanical devices through top-down and bottom-up approaches will be discussed.  相似文献   

20.
This review article presents and discusses the recent progress made in the stabilization, protection, improvement, and design of halide perovskite‐based photocatalysts, photoelectrodes, and devices for solar‐to‐chemical fuel conversion. With the target of water splitting, hydrogen iodide splitting, and CO2 reduction reactions, the strategies established for halide perovskites used in photocatalytic particle‐suspension systems, photoelectrode thin‐film systems, and photovoltaic‐(photo)electrocatalysis tandem systems are organized and introduced. Moreover, recent achievements in discovering new and stable halide perovskite materials, developing protective and functional shells and layers, designing proper reaction solution systems, and tandem device configurations are emphasized and discussed. Perspectives on the future design of halide perovskite materials and devices for solar‐to‐chemical fuel conversion are provided. This review may serve as a guide for researchers interested in utilizing halide perovskite materials for solar‐to‐chemical fuel conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号