首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although embryo cryopreservation has become commonplace in many species, effective methods are not available for routine freezing of unfertilized eggs. Cryopreservation-induced damage may be caused by the high concentration of sodium ions in conventional freezing media. This study investigates the effect of a newly developed low-sodium choline-based medium (CJ2) on the ability of unfertilized, metaphase II mouse eggs to survive cryopreservation and develop to the blastocyst stagein vitro.Specifically, the effects of cooling to subzero temperatures, thawing rate, LN2plunge temperature, and equilibration with a low-sodium medium prior to freezing are examined. In contrast to cooling to 23, 0, or −7.0°C in a sodium-based freezing medium (ETFM), cooling in CJ2 had no significant negative effect on oocyte survival or development. Oocytes frozen in CJ2 survived plunging into LN2from −10, −20, or −33°C at significantly higher rates than oocytes frozen in ETFM. With the protocol used (1.5 M PrOH, 0.1 M sucrose, −0.3 C/min, plunging at −33°C) rapid thawing by direct submersion in 30°C water was more detrimental to oocyte survival than holding in air for 30 or 120 s prior to transfer to water. Equilibration of unfertilized oocytes with a low-sodium medium prior to cryopreservation in CJ2 significantly increased survival and blastocyst development. These results demonstrate that the high concentration of sodium in conventional freezing media is detrimental to oocyte cryopreservation and show that choline is a promising replacement. Reducing the sodium content of the freezing medium to a very low level or eliminating sodium altogether may allow oocytes and other cells to be frozen more effectively.  相似文献   

2.
In cryopreservation procedures, the capacity to protect the cells from freezing and thawing processes is sensitive to the choice of the cryoprotective agent (CPA) and to its optimal concentration. The advancement of research on Tunicate model species has raised interest in liquid nitrogen cryopreservation for the storage and distribution of genetic resources. Ciona intestinalis (Linnè, 1767) consists of a complex of cryptic taxa that are central to several areas of investigation, from comparative genomics to invasive biology. Here we investigated how five CPAs, three chilling rates and two freezing rates influence semen cryopreservation in C. intestinalis sp. A. By using larval morphology and motility as endpoints, we estimated that long term semen storage requires 10% dimethyl sulfoxide as a protective agent, −1 °C/min chilling rate (18 °C to 5 °C) and −13 °C/min freezing rate (5 °C to −80 °C), followed by immersion in liquid nitrogen.  相似文献   

3.
Controlled slow freezing and vitrification have been successfully used for ovine embryo cryopreservation. Selection of embryos for transfer is based on stereomicroscopical embryo scoring after thawing, but the subjectivity inherent to this selection step has been demonstrated by ultrastructural studies of controlled slow frozen, in vivo produced ovine morulae and blastocysts. These studies have shown that certain abnormalities remain undetected by stereomicroscopy only. In the present study, using ovine in vivo produced morulae and blastocysts, we have studied the ultrastructural alterations induced by open pulled straw vitrification (OPS) and controlled slow freezing, compared stereomicroscopical embryo scoring with light microscopy evaluation of embryo's semithin sections, and related the ultrastructural cellular damage with the embryo classification by stereomicroscopical embryo scoring of embryos’ and semithin section evaluation by light microscopy. The ultrastructural lesions found for OPS-vitrified and controlled slow frozen embryos were similar, independently of embryo stage. A significant higher number of grade 3 embryos was found at stereomicroscopical scoring after controlled slow freezing (P = 0.02), and a significant higher number of grade 3 blastocysts was found at semithin sectioning after OPS vitrification (P = 0.037). The extension of ultrastructural damage, especially of mitochondria and cytoskeleton, was related to the semithin classification but not to stereomicroscopical scoring at thawing. This suggests that semithin scoring is a useful tool for predicting ultrastructural lesions and new improvements in cryopreservation and thawing methods of ovine embryos are still warranted, including in the case of blastocysts cryopreserved by OPS vitrification.  相似文献   

4.
The cryopreservation of fish embryos is a challenge because of their structure, with multiple compartments and permeability barriers, and their high chilling sensitivity. Vitrification at advanced developmental stages is considered to be the more promising option. Nevertheless, all reported attempts have failed. Previous studies demonstrated a better ability for freezing in species that naturally express antifreeze proteins (AFPs). These proteins have been delivered into other fish embryos using time-consuming techniques like microinjection. In the present study, the introduction of FITC labelled AFPs was assayed in zebrafish embryos at early developmental stages (from 2-cell to high blastula stage), before the formation of the yolk syncytial layer, by an easy and non-invasive method and evaluated by fluorescence and confocal microscopy. Incubation with AFPs at 128-cell or high blastula stage provides incorporation of the protein in 50–90% of embryos without affecting hatching. Incubation in media containing protein is a simple, harmless and effective method which makes it possible to treat several embryos at the same time. AFPs remain located in derivatives from marginal blastomeres: the yolk syncytial layer, the most cryosensitive and impermeable barrier, and different digestive organs. Our findings demonstrate that delivery of AFP type I and AFP type III into zebrafish embryos by incubation in media containing protein is a simple and harmless method that may improve cryoprotection of the cellular compartment.  相似文献   

5.
We investigated the effects of antifreeze protein (AFP) III supplementation on the cryopreservation of rabbit sperm cells and embryos. Ejaculated semen was collected from male Japanese white (JW) rabbits and divided into four AFP-supplemented groups (0.1 μg/ml, 1 μg/ml, 10 μg/ml, 100 μg/ml) and one control group with no AFP-supplementation. The semen samples were treated with egg-yolk HEPES extender containing 6% acetamide before the sperm was cooled from room temperature to 5 °C, then packed into sperm straws. The straws were frozen in steam of liquid nitrogen (LN2) and then preserved in the LN2. The motility of the sperm after thawing in 37 °C water was analyzed. The percentage of rapidly motile sperm in the 1 μg/ml AFP group was significantly higher than in the control group. Morulae were collected from female JW rabbits and divided into three AFP-supplemented groups (100 ng/ml, 500 ng/ml, 1000 ng/ml) and one control group. The morulae, immersed in an embryo-freezing solution (M199-HEPES containing 20% ethylene glycol, 20% dimethylsulfoxide, 10% fetal bovine serum and 0.25 M sucrose), were packed into open pulled embryo straws and vitrified in LN2. The frozen embryos were thawed in the embryo-freezing solution, and the rates of embryo survival and development to blastocyte stage were analyzed after incubation for 72 h. The development rate of the embryos in the 500 ng/ml AFP group was significantly higher than in the control group, but that in the 1000 ng/ml AFP group was significantly lower. In conclusion, the appropriate dose of AFP III increased the number of rapidly motile sperm and embryo survival following freezing and thawing. The results suggest that supplementation with AFP III can increase the efficiency of cryopreservation of rabbit sperm cells and embryos.  相似文献   

6.
The objective of this study was to verify the effect of different freezing curves, straw sizes, and thawing rates on the cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were diluted in a coconut water extender (ACP-116c) with egg yolk and glycerol, packaged into 0.25 mL or 0.50 mL plastic straws and cryopreserved in liquid nitrogen following a slow (−10 °C/min) or a fast (−40 °C/min) freezing curve. After one week, samples were thawed at 37 °C/1 min or 70 °C/8 s and evaluated as reported for fresh semen, and also for kinematic parameters (computerized analysis). A significant decrease in sperm motility and kinetic rating was observed after glycerol addition at 5 °C and also after thawing for all the treatments (P < 0.05). Regarding post-thaw semen variables, no differences were verified between freezing curves when the same straw size and thawing rate were taken as reference (P > 0.05). In general, values for sperm characteristics found after thawing at 37 °C were better preserved than at 70 °C (P < 0.05), both in the use of 0.25 mL or 0.50 mL straws, which were similar for semen packaging (P > 0.05). The evaluation of the kinematic parameters of sperm motility confirmed these results at values varying from 20% to 30% motile sperm for the samples thawed at 37 °C, and values fewer than 12% motile sperm for samples thawed at 70 °C (P < 0.05). In conclusion, we recommend the use of a fast freezing curve that reduces the time spent on the cryopreservation of collared peccary semen, which could be packaged both in 0.25 mL or 0.50 mL straws, but the thawing should be conducted at 37 °C/1 min.  相似文献   

7.
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as −26 °C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3 mg/mL in Unisol base mixed with 1 M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9 °C) when compared to single DAFPs and/or conventional 1 M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.  相似文献   

8.
The Zebrafish has gained increased popularity as an aquatic model species in various research fields, and its widespread use has led to numerous mutant strains and transgenic lines. This creates the need to store these important genetic materials as frozen gametes. Sperm cryopreservation in zebrafish has been shown to yield very low post-thaw survival and many protocols suffer from great variability and poor reproducibility. The present study was intended to develop a freezing protocol that can be reliably used to cryopreserve zebrafish sperm with high post-thaw survival. In particular, our study focused on cooling protocol optimization with the aid of cryomicroscopy. Specifically, sperm suspended in 8% DMSO or 4% MeOH were first incubated with live/dead fluorescent dyes (SYBR14/PI) and then cooled at various rates from 4 °C to different intermediate stopping temperatures such as −10, −20, −30 and −80 °C before rewarming to 35 °C at the rate of 100 °C/min. %PI-positive (dead) cells were monitored throughout the cooling process and this screening yielded an optimal rate of 25 °C/min for this initial phase of freezing. We then tested the optimal cooling rate for the second phase of freezing from various intermediate stopping temperatures to −80 °C before plunging into liquid nitrogen. Our finding yielded an optimal intermediate stopping temperature of −30 °C and an optimal rate of 5 °C/min for this second phase of freezing. When we further applied this two-step cooling protocol to the conventional controlled-rate freezer, the average post-thaw motility measured by CASA was 46.8 ± 6.40% across 11 males, indicating high post-thaw survival and consistent results among different individuals. Our study indicates that cryomiscroscopy is a powerful tool to devise the optimal cooling conditions for species with sperm that are very sensitive to cryodamage.  相似文献   

9.
After injury or death of a valuable male, recovery of epididymal spermatozoa may be the last chance to ensure preservation of its genetic material. The objective of this research was to study the effect of sperm storage, at 4 °C up to 96 h, in the epididymides obtained from castrated horses and its effect on different functional sperm parameters. Aims were to study the effect of (1) sperm storage on viability and chromatin condensation; (2) pre-incubation of recovered epididymal sperm in the freezing extender, prior cryopreservation, on viability and chromatin condensation; and (3) freezing–thawing on viability, chromatin condensation, ROS generation, protein tyrosine phosphorylation and heterologous fertilization rate (ICSI and IVF using bovine oocytes) of sperm recovered from the epididymis up to 96 h post castration. The average volume (720 ± 159 μL) and the concentration (6.5 ± 0.4 × 109 spermatozoa/mL) of sperm recovered from the epididymis were not affected by storage. Sperm viability after refrigeration at 4 °C for up to72 h was similar (P < 0.01). The effect of sperm dilution in the freezing media showed similar values up to 48 h, while viability was preserved up to 72 h (P < 0.01). Cryopreserved spermatozoa show similar viability between different storage times. Chromatin condensation was not affected by storage time; however, incubation for 30 min in freezing medium and freezing–thawing process induced an increase in the chromatin decondensation. ROS generation was not affected by storage up to 96 h. Epididymal storage did not affect sperm protein tyrosine phosphorylation patterns; although the pattern of phosphorylation changed to strong staining of the equatorial segment when the sperm where capacitated in sperm–TALP. Finally, successful and similar pronuclear formation (analyzed by ICSI) and in vitro penetration (evaluated with bovine zone free oocyte) was observed using cryopreserved sperm obtained from prolong epididymal storage at 4 °C. In conclusion, cryopreservation of epididymal stallion sperm stored for up to 72 h in the epididymis at 4 °C, maintain both viability and ability to fertilize in vitro.  相似文献   

10.
The Greenshell™ mussel (Perna canaliculus) is the main shellfish species farmed in New Zealand. The aim of this study was to evaluate the effects of cryoprotectant concentration, loading and unloading strategy as well as freezing and thawing method in order to develop a protocol for cryopreservation of trochophore larvae (16–20 h old). Toxicity tests showed that levels of 10–15% ethylene glycol (EG) were not toxic to larvae and could be loaded and unloaded in a single step. Through cryopreservation experiments, we designed a cryopreservation protocol that enabled 40–60% of trochophores to develop to D-larvae when normalized to controls. The protocol involved: holding at 0 °C for 5 min, then cooling at 1 °C min−1 to −10 °C, holding for a further 5 min, then cooling at 0.5 °C min−1 to −35 °C followed by a 5 min hold and then plunging into liquid nitrogen. A final larval rearing experiment of 18 days was conducted to assess the ability of these frozen larvae to develop further. Results showed that only 2.8% of the frozen trochophores were able to develop to competent pediveligers.  相似文献   

11.
There are no reports on the use of antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) for the use of bull sperm cryopreservation despite studies in the ram, mouse and chimpanzee. The effect of freezing and thawing on bull sperm viability, osmotic resistance and acrosome integrity were observed following the addition of AFP1, AFPIII and AFGP at four concentrations (0.1, 1, 10 and 100 microg/ml). In a second part of the experiment, fluorescein was conjugated to the AFPs and AFGP and observations were made using fluorescence microscopy to determine whether binding occurred between the sperm cell membranes and the proteins. In the final part of the study the cryopreservation media were cooled in the presence of the AFPs and AFGPs at the four concentrations on a cryomicroscope to mimic similar cooling curves as those used in the presence of sperm. Following freeze-thaw, AFPI resulted in increased osmotic resistant cells at 0.1-10 microg/ml compared to the control (P<0.01). AFPI and AFPIII did bind to the sperm cells. There was no visual difference in ice structure between the control, AFPIII and AFGP but AFPI resulted in parallel crystals at 0.1, 1 and 10 microg/ml. We suggest that the increased osmotic resistance in the spermatozoa cryopreserved in AFPI is due to the cells orientating between the ice crystals, reducing mechanical stress to the cell membrane. Previous research has shown that osmotic resistance correlates with bull fertility, suggesting that bull spermatozoa cryopreserved in the presence of AFPI may have increased fertility in vivo.  相似文献   

12.
The aim of this retrospective study was to evaluate whether the season of ejaculate collection influences the freezability of porcine sperm. A total of 434 ejaculates were collected from boars of six different breeds over three years (2008–2011) and throughout the four seasons of the year identified in the northern hemisphere (winter, spring, summer and autumn). The ejaculates were cryopreserved using a standard 0.5 mL straw freezing protocol. Sperm quality was assessed before (fresh semen samples kept 24 h at 17 °C) and after freezing and thawing (at 30 and 150 min post-thawing in semen samples kept in a water bath at 37 °C), according to the percentages of total motility, as assessed by the CASA system, and viability, as assessed by flow cytometry after staining with SYBR-14, PI and PE-PNA. The data, in percentages, on sperm motility and viability after freezing and thawing were obtained at each evaluation time (recovered) and were normalized to the values before freezing (normalized). The season of ejaculate collection influenced (P < 0.01) sperm quality before freezing and after thawing (recovered and normalized), irrespective of the breed of boar. Sperm quality was lower in summer, both in terms of motility and viability, and in autumn, in terms of motility, than in winter and spring. Seasonality in the normalized data indicates that the season of ejaculate collection influences sperm freezability, regardless of the season’s influence on sperm quality before freezing. Consequently, the spermatozoa from ejaculates collected during summer and, to a lesser extent, also in autumn, are more sensitive to cryopreservation than those from ejaculates collected during winter and spring.  相似文献   

13.
Sperm cryopreservation of red snapper (Lutjanus argentimaculatus) is essentially unexplored, although many species of the Lutjanidae family are considered to be high-value commercial species. The objective of this study was to develop a species-specific cryopreservation protocol for red snapper (L. argentimaculatus) sperm by optimizing cryoprotectants and cooling rates in the cryopreservation procedure. Ten cryoprotectants at four concentrations and two freezing protocols were examined in two separate experiments. In the first experiment, toxicity studies of dimethyl sulfoxide (DMSO), glycerol, propylene glycol (PG), ethylene glycol (EG), formamide, methanol, ethanol, sucrose, trehalose, and dimethylacetamide (DMA) on sperm motility were performed. Semen diluted 1:1 in Ringer solution were exposed to cryoprotectants at four final concentrations of 5%, 10%, 15%, or 20% for periods of 10, 20, 30, 40, 50, 60, 90, and 120 min at room temperature (25 °C). The cryoprotectants and concentrations that showed the least toxic effect on sperm motility were selected for cryopreservation trials. In the second experiment, selected cryoprotectants were then assessed for freezing capacity of sperm as follows: DMSO 5% and 10%, PG 5% and 10%, EG 5% and 10%, ethanol 5%, and methanol 5%. Semen was diluted 1:1 in Ringer solution and equilibrated with selected cryoprotectants for 10 min at room temperature. Sperm were frozen in a controlled-rate programmable freezer at four cooling rates of 3, 5, 10, and 12 °C/min from an initial temperature of 25 °C to final temperatures of −40 or −80 °C before plunging into liquid nitrogen. Sperm equilibrated in 10% DMSO and cooled at a rate of 10 °C/min to a final temperature of −80 °C had the highest motility (91.1 ± 2.2%) and viability (92.7 ± 2.3%) after thawing. The fertilization rate of frozen-thawed sperm (72.4 ± 2.4%) was not different (P > 0.05) from that of fresh sperm (75.5 ± 2.4%). This study apparently represents the first reported attempt for cryopreservation of L. argentimaculatus sperm.  相似文献   

14.
This paper reports the findings of the ongoing studies on cryopreservation of the snakehead, Channa striata embryos. The specific objective of this study was to collect data on the sensitivity of C. striata embryo hatching rate to low temperatures at two different developmental stages in the presence of four different cryoprotectants. Embryos at morula and heartbeat stages were selected and incubated in 1 M dimethyl sulfoxide (Me2SO), 1 M ethylene glycol (EG), 1 M methanol (MeOH) and 0.1 M sucrose solutions at different temperatures for a period of time. Embryos were kept at 24 °C (control), 15 °C, 4 °C and −2 °C for 5 min, 1 h and 3 h. Following these treatments, the embryos were then transferred into a 24 °C water bath until hatch to evaluate the hatching rate. The results showed that there was a significant decrease of hatching rate in both developmental stages following exposure to 4 °C and −2 °C at 1 h and 3 h exposure in each treatment. Heartbeat stage was more tolerant against chilling at −2 °C for 3 h exposure in Me2SO followed by MeOH, sucrose and EG. Further studies will be conducted to find the best method to preserve embryos for long term storage.  相似文献   

15.
CSF470 vaccine is a mixture of four lethally irradiated melanoma cell lines, administered with BCG and GM-CSF, which is currently being tested in a Phase II/III Clinical trial in stage II/III melanoma patients. To prepare vaccine doses, irradiated melanoma cell lines are frozen using dimethyl sulfoxide (Me2SO) and stored in liquid nitrogen (liqN2). Prior to inoculation, doses must be thawed, washed to remove Me2SO and suspended for clinical administration. Avoiding the use of Me2SO and storage in liqN2 would allow future freeze-drying of CSF470 vaccine to facilitate pharmaceutical production and distribution. We worked on the development of an alternative cryopreservation methodology while keeping the vaccine’s biological and immunogenic properties. We tested different freezing media containing trehalose suitable to remain as excipients in a freeze-dried product, to cryopreserve melanoma cells either before or after gamma irradiation. Melanoma cells incorporated trehalose after 5 h incubation at 37 °C by fluid-phase endocytosis, reaching an intracellular concentration that varied between 70–140 mM depending on the cell line. Optimal freezing conditions were 0.2 M trehalose and 30 mg/ml human serum albumin, at −84 °C. Vaccine doses could be frozen in trehalose at −84 °C for at least four months keeping their cellular integrity, antigen expression and apoptosis/necrosis profile after gamma-irradiation as compared to Me2SO control. Non-irradiated melanoma cell lines also showed comparable proliferative capacity after both cryopreservation procedures. Trehalose-freezing medium allowed us to cryopreserve melanoma cells, either alive or after gamma irradiation, at −84 °C avoiding the use of Me2SO and liqN2 storage. These cryopreservation conditions could be suitable for future freeze-drying of CSF470 vaccine.  相似文献   

16.
S. Tsai 《Theriogenology》2009,71(8):1226-1233
Cryopreservation of germplasm of aquatic species offers many benefits to the fields of aquaculture, conservation and biomedicine. Although successful fish sperm cryopreservation has been achieved with many species, there has been no report of successful cryopreservation of fish embryos and late stage oocytes which are large, chilling sensitive and have low membrane permeability. In the present study, cryopreservation of early stage zebrafish ovarian follicles was studied for the first time using controlled slow freezing. The effect of cryoprotectant, freezing medium, cooling rate, method for cryoprotectant removal, post-thaw incubation time and ovarian follicle developmental stage were investigated. Stages I and II ovarian follicles were frozen in 4 M methanol and 3 M DMSO in either L-15 medium or KCl buffer. Ovarian follicle viability was assessed using trypan blue, FDA + PI staining and ADP/ATP assay. The results showed that KCl buffer was more beneficial than L-15 medium, methanol was more effective than DMSO, optimum cooling rates were 2-4 °C/min, stepwise removal of cryoprotectant improved ovarian follicle viability significantly and stage I ovarian follicles were more sensitive to freezing. The results also showed that FDA + PI staining and ADP/ATP assay were more sensitive than TB staining. The highest follicle viabilities after post-thaw incubation for 2 h obtained with FDA + PI staining were 50.7 ± 4.0% although ADP/ATP ratios of the cryopreserved follicles were significantly increased indicating increased cell damage. Studies are currently being carried out on in vitro maturation of these cryopreserved ovarian follicles.  相似文献   

17.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

18.
Wheat (Triticum aestivum L. cv. Norstar) suspension cultures and regenerable calli initiated from immature embryos can be cryopreserved in liquid nitrogen temperature (–196°C) by slow freezing (0.5°C/min) in the presence of a mixture of DMSO and sucrose or sorbitol. Cold hardening or ABA treatment before cryopreservation increased the freezing resistance and improved the survival of wheat suspension culture in liquid nitrogen. Callus culture, established from immature embryos, prefrozen in 5% DMSO and 0.5M sorbitol survived liquid nitrogen storage and resumed plant regeneration after thawing. The results confirm the feasibility of long term preservation of wheat embryo callus by cryopreservation and retention of plant regeneration ability.Abbreviations ABA Abscisic acid - 2,4-D 2,4-Dichlorophenoxyacetic acid - DMSO Dimethylsulfoxide - LN Liquid nitrogen - TTC 2,3,5-triphenyltetrazolium chloride NRCC No. 23850.  相似文献   

19.
At present, over 300 species of arbuscular mycorrhizal fungi (AMF) have been identified, most of which being stored in international collections. Their maintenance is mostly achieved in greenhouse via continuous culture on trap plants or in vitro in association with excised root organs. Both methods are work-intensive and for the former present the risk of unwanted contaminations. The in vitro root organ culture of AMF has become an alternative preventing contamination. Nevertheless, the risk for somaclonal variation during the sub-cultivation process cannot be excluded. A method for the long-term conservation that guarantees the stability of the biological material is thus highly demanded to preserve the microorganisms and their genetic stability. Here, 12 AMF isolates cultured in vitro in association with excised carrot roots were encapsulated in alginate beads and subsequently cryopreserved. Several protocols were tested taking into consideration culture age, alginate bead pre-drying, and rate of decrease in temperature. The viability of the AMF isolates was estimated by the percentage of potentially infective beads (%PIB) that measure the % of beads that contain at least one germinated propagule. Thermal behaviour of alginate beads was analysed by a differential thermal calorimeter before and after drying to estimate the frozen and unfrozen water during the cryopreservation process. It was shown that the spore damage was directly related to ice formation during cryopreservation. The encapsulation and culture age were also determinant parameters for the successful cryopreservation. Irrespective of the AMF isolate, the optimal procedure for cryopreservation comprised five steps: (1) the encapsulation of propagules (i.e. spores and mycorrhizal root pieces) isolated from 5 m old cultures, (2) the incubation overnight in trehalose (0.5 M), (3) the drying during 48 h at 27 °C, (4) the cryopreservation in the freezer at −130 °C following a two-step decrease in temperature: a fast decrease (∼12 °C min−1) from room temperature (+20 °C) to −110 °C followed by a slow decrease in temperature (∼1 °C min−1) from −110 °C to −130 °C, and (5) the direct thawing in a water bath (+35 °C). The % PIB was above 70 % for all the isolates and even above 95 % for 11 out of the 12 isolates after several months of storage at ultra-low temperature. All the isolates kept their capacity to associate to an excised carrot root in vitro and to reproduce the fungal life cycle with the production of several hundreds to thousands of spores after 2 m. This method opens the door for the long-term maintenance at ultra-low temperature of AMF isolates within international repositories.  相似文献   

20.
During extracellular freezing, solutes in the haemolymph are concentrated, resulting in osmotic dehydration of the cells, which must be reversed upon thawing. Here, we used freeze tolerant Pyrrharctia isabella (Lepidoptera: Arctiidae) larvae to examine the processes of ion redistribution after thawing. To investigate the effect of the intensity of cold exposure on ion redistribution after thawing, we exposed caterpillars to −14 °C, −20 °C or −30 °C for 35 h. To investigate the effect of duration of cold exposure on ion redistribution after thawing, we exposed the caterpillars to −14 °C for up to 6 weeks while sampling several time points. The concentrations of Na+, K+, Mg2+ and Ca2+ were measured after thawing in the haemolymph, fat body, muscle, midgut tissue and hindgut tissue. Being frozen for long durations (>3 weeks) or at low temperatures (−30 °C) both result in 100% mortality, although different ions and tissues appear to be affected by each treatment. Both water distribution and ion content changes were detected after thawing, with the largest effects seen in the fat body and midgut tissue. Magnesium homeostasis appears to be vital for post-freeze survival in these larvae. The movement of ions during thawing lagged behind the movement of water, and ion homeostasis was not restored within the same time frame as water homeostasis. Failure to regain ion homeostasis after thawing is therefore implicated in mortality of freeze tolerant insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号