首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform infrared spectroscopy (FTIR) and cryomicroscopy were used to define the process of cellular injury during freezing in LNCaP prostate tumor cells, at the molecular level. Cell pellets were monitored during cooling at 2 °C/min while the ice nucleation temperature was varied between − 3 and − 10 °C. We show that the cells tend to dehydrate precipitously after nucleation unless intracellular ice formation occurs. The predicted incidence of intracellular ice formation rapidly increases at ice nucleation temperatures below − 4 °C and cell survival exhibits an optimum at a nucleation temperature of − 6 °C. The ice nucleation temperature was found to have a great effect on the membrane phase behavior of the cells. The onset of the liquid crystalline to gel phase transition coincided with the ice nucleation temperature. In addition, nucleation at − 3 °C resulted in a much more co-operative phase transition and a concomitantly lower residual conformational disorder of the membranes in the frozen state compared to samples that nucleated at − 10 °C. These observations were explained by the effect of the nucleation temperature on the extent of cellular dehydration and intracellular ice formation. Amide-III band analysis revealed that proteins are relatively stable during freezing and that heat-induced protein denaturation coincides with an abrupt decrease in α-helical structures and a concomitant increase in β-sheet structures starting at an onset temperature of approximately 48 °C.  相似文献   

2.
Cell survival during freezing applications in biomedicine is highly correlated to the temperature history and its dependent cellular biophysical events of dehydration and intracellular ice formation (IIF). Although cell membranes are known to play a significant role in cell injury, a clear correlation between the membrane state and the surrounding intracellular and extracellular water is still lacking. We previously showed that lipid hydration in LNCaP tumor cells is related to cellular dehydration. The goal of this study is to build upon this work by correlating both the phase state of the membrane and the surrounding water to cellular biophysical events in three different mammalian cell types: human prostate tumor cells (LNCaP), human dermal fibroblasts (HDF), and porcine smooth muscle cells (SMC) using Fourier Transform Infrared spectroscopy (FTIR). Variable cooling rates were achieved by controlling the degree of supercooling prior to ice nucleation (− 3 °C and − 10 °C) while the sample was cooled at a set rate of 2 °C/min. Membranes displayed a highly cooperative phase transition under dehydrating conditions (i.e. NT = − 3 °C), which was not observed under IIF conditions (NT = − 10 °C). Spectral analysis showed a consistently greater amount of ice formation during dehydrating vs. IIF conditions in all cell types. This is hypothesized to be due to the extreme loss of membrane hydration in dehydrating cells that is manifested as excess water available for phase change. Interestingly, changes in residual membrane conformational disorder correlate strongly with cellular volumetric decreases as assessed by cryomicroscopy. A strong correlation was also found between the activation energies for freezing induced lyotropic membrane phase change determined using FTIR and the water transport measured by cryomicroscopy. Reduced lipid hydration under dehydration freezing conditions is suggested as one of the likely causes of what has been termed as “solution effects” injury in cryobiology.  相似文献   

3.
The cold tolerance of first-instar nymphs of the Australian plague locust, Chortoicetes terminifera, was examined using measures of total body water content, supercooling point and mortality for a range of sub-zero temperature exposure regimes. The supercooling points for starved and fed nymphs were −13.1 ± 0.9 and −12.6 ± 1.6 °C, and freezing caused complete mortality. Above these temperatures, nymphs were cold tolerant to different degrees based on whether they were starved or given access to food and water for 24 h prior to exposure. The rate of cooling also had a significant effect on mortality. Very rapid cooling to −7 °C caused 84 and 87% mortality for starved and fed nymphs respectively, but this significantly decreased for starved nymphs if temperature declined by more ecologically realistic rates of 0.5 and 0.1 °C min−1. These results are indicative of a rapid cold hardening response and are discussed in terms of the likely effects of cold nights and frost on first-instar nymphal survival in the field.  相似文献   

4.
To survive freezing, cells must not undergo internal ice formation during cooling. One vital factor is the cooling rate. The faster cells are cooled, the more their contents supercool, and at some subzero temperature that supercooled cytoplasm will freeze. The question is at what temperature? The relation between cooling rate and cell supercooling can be computed. Two important parameters are the water permeability (Lp) and its temperature dependence. To avoid intracellular ice formation (IIF), the supercooling must be eliminated by dehydration before the cell cools to its ice nucleation temperature. With an observed nucleation temperature of −25 °C, the modeling predicts that IIF should not occur in yeast cooled at <20 °C/min and it should occur with near certainty in cells cooled at ?30 °C/min. Experiments with differential scanning calorimetry (DSC) confirmed these predictions closely. The premise with the DSC is that if there is no IIF, one should see only a single exotherm representing the freezing of the external water. If IIF occurs, one should see a second, lower temperature exotherm. A further test of whether this second exotherm is IIF is whether it disappears on repeated freezing. IIF disrupts the plasma membrane; consequently, in a subsequent freeze cycle, the cell can no longer supercool and will not exhibit a second exotherm. This proved to be the case at cooling rates >20 °C/min.  相似文献   

5.
CSF470 vaccine is a mixture of four lethally irradiated melanoma cell lines, administered with BCG and GM-CSF, which is currently being tested in a Phase II/III Clinical trial in stage II/III melanoma patients. To prepare vaccine doses, irradiated melanoma cell lines are frozen using dimethyl sulfoxide (Me2SO) and stored in liquid nitrogen (liqN2). Prior to inoculation, doses must be thawed, washed to remove Me2SO and suspended for clinical administration. Avoiding the use of Me2SO and storage in liqN2 would allow future freeze-drying of CSF470 vaccine to facilitate pharmaceutical production and distribution. We worked on the development of an alternative cryopreservation methodology while keeping the vaccine’s biological and immunogenic properties. We tested different freezing media containing trehalose suitable to remain as excipients in a freeze-dried product, to cryopreserve melanoma cells either before or after gamma irradiation. Melanoma cells incorporated trehalose after 5 h incubation at 37 °C by fluid-phase endocytosis, reaching an intracellular concentration that varied between 70–140 mM depending on the cell line. Optimal freezing conditions were 0.2 M trehalose and 30 mg/ml human serum albumin, at −84 °C. Vaccine doses could be frozen in trehalose at −84 °C for at least four months keeping their cellular integrity, antigen expression and apoptosis/necrosis profile after gamma-irradiation as compared to Me2SO control. Non-irradiated melanoma cell lines also showed comparable proliferative capacity after both cryopreservation procedures. Trehalose-freezing medium allowed us to cryopreserve melanoma cells, either alive or after gamma irradiation, at −84 °C avoiding the use of Me2SO and liqN2 storage. These cryopreservation conditions could be suitable for future freeze-drying of CSF470 vaccine.  相似文献   

6.
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as −26 °C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3 mg/mL in Unisol base mixed with 1 M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9 °C) when compared to single DAFPs and/or conventional 1 M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.  相似文献   

7.
The Zebrafish has gained increased popularity as an aquatic model species in various research fields, and its widespread use has led to numerous mutant strains and transgenic lines. This creates the need to store these important genetic materials as frozen gametes. Sperm cryopreservation in zebrafish has been shown to yield very low post-thaw survival and many protocols suffer from great variability and poor reproducibility. The present study was intended to develop a freezing protocol that can be reliably used to cryopreserve zebrafish sperm with high post-thaw survival. In particular, our study focused on cooling protocol optimization with the aid of cryomicroscopy. Specifically, sperm suspended in 8% DMSO or 4% MeOH were first incubated with live/dead fluorescent dyes (SYBR14/PI) and then cooled at various rates from 4 °C to different intermediate stopping temperatures such as −10, −20, −30 and −80 °C before rewarming to 35 °C at the rate of 100 °C/min. %PI-positive (dead) cells were monitored throughout the cooling process and this screening yielded an optimal rate of 25 °C/min for this initial phase of freezing. We then tested the optimal cooling rate for the second phase of freezing from various intermediate stopping temperatures to −80 °C before plunging into liquid nitrogen. Our finding yielded an optimal intermediate stopping temperature of −30 °C and an optimal rate of 5 °C/min for this second phase of freezing. When we further applied this two-step cooling protocol to the conventional controlled-rate freezer, the average post-thaw motility measured by CASA was 46.8 ± 6.40% across 11 males, indicating high post-thaw survival and consistent results among different individuals. Our study indicates that cryomiscroscopy is a powerful tool to devise the optimal cooling conditions for species with sperm that are very sensitive to cryodamage.  相似文献   

8.
A mouse insulinoma (MIN6) strain in which connexin expression has been inhibited by antisense technology holds promise as an experimental model system for investigating the role of gap junctions in intercellular ice propagation. However, to properly interpret measurements of intracellular ice formation kinetics, the effects of cell dehydration on cytoplasmic supercooling must be determined. Thus, the cell membrane water permeability in monolayer cultures of the antisense-transfected MIN6 strain was measured using a fluorescence quenching method. By repeating the experiments at 4 °C, 12 °C, 21 °C, and 37 °C, the activation energy for water transport was determined to be Ea = 51 ± 3 kJ/mol. Although differences between membrane permeability measurements in theantisense and wild-type strains were not statistically significant, simulation of water transport during rapid freezing (130 °C/min) predicted that intracellular supercooling in the genetically modified MIN6 strain may become significantly larger than the supercooling in wild-type cells at temperatures below −15 °C.  相似文献   

9.
Preservation of frozen yeast cells by trehalose.   总被引:9,自引:0,他引:9  
Two different methods commonly used to preserve intact yeast cells-freezing and freeze-drying-were compared. Different yeast cells submitted to these treatments were stored for 28 days and cell viability assessed during this period. Intact yeast cells showed to be less tolerant to freeze-drying than to freezing. The rate of survival for both treatments could be enhanced by exogenous trehalose (10%) added during freezing and freeze-drying treatments or by a combination of two procedures: a pre-exposure of cells to 40 degrees C for 60 min and addition of trehalose. A maximum survival level of 71.5 +/- 6.3% after freezing could be achieved at the end of a storage period of 28 days, whereas only 25.0 +/- 1.4% showed the ability to tolerate freeze-drying treatment, if both low-temperature treatments were preceded by a heat exposure and addition of trehalose to yeast cells. Increased survival ability was also obtained when the pre-exposure treatment of yeast cells was performed at 10 degrees C for 3 h and trehalose was added: these treatments enhanced cell survival following freezing from 20.5 +/- 7. 7% to 60.0 +/- 3.5%. Although both mild cold and heat shock treatments could enhance cell tolerance to low temperature, only the heat treatment was able to increase the accumulation of intracellular trehalose whereas, during cold shock exposure, the intracellular amount of trehalose remained unaltered. Intracellular trehalose levels seemed not to be the only factor contributing to cell tolerance against freezing and freeze-drying treatments; however, the protection that this sugar confers to cells can be exerted only if it is to be found on both sides of the plasma membrane.  相似文献   

10.
The two-spotted spider mite, Tetranychus urticae, is a worldwide pest species that overwinters as diapausing females. Cold hardening is presumed to start during diapause development to ensure the successful overwintering of this species. To address this hypothesis, we compared cold tolerance between non-diapausing and diapausing females. We measured supercooling point (SCP) and survival to acute cold stress by exposing the mites at a range of sub-zero temperatures (from −4 to −28 °C for 2 h). The mean SCPs of non-diapausing and diapausing females were −19.6±0.5 and −24.7±0.3 °C respectively, and freezing killed the mites. Diapausing females were significantly more cold tolerant than non-diapausing ones, with LT50 of −19.7 and −13.3 °C, respectively. Further, we also examined the effects of cold acclimation (10 d at 0 or 5 °C) in non-diapausing and diapausing females. Our findings indicated that diapause decreased SCP significantly, while cold acclimation had no effect on the SCP except for non-diapausing females that were acclimated at 5 °C. Acclimation at 5 °C enhanced survival to acute cold stress in diapausing and non-diapausing females, with LT50 of −22.0 and −17.1 °C, respectively. Altogether, our results indicate that T. urticae is a chill tolerant species, and that diapause and cold acclimation elevate cold hardiness in this species.  相似文献   

11.
As an essential aspect of its invasive character in Europe, this study examined the cold hardiness of the harlequin ladybird Harmonia axyridis. This was done for field-collected populations in Belgium overwintering either in an unheated indoor or an outdoor hibernaculum. The supercooling point, lower lethal temperature and lower lethal time at 0 and −5 °C were determined. Possible seasonal changes were taken into account by monitoring the populations during each winter month. The supercooling point and lower lethal temperature remained relatively constant for the overwintering populations in the outdoor hibernaculum, ranging from −17.5 to −16.5 °C and −17.1 to −16.3 °C, respectively. In contrast, the supercooling point and lower lethal temperature of the population overwintering indoors clearly increased as the winter progressed, from −18.5 to −13.2 °C and −16.7 to −14.1 °C, respectively. A proportion of the individuals overwintering indoors could thus encounter problems surviving the winter due to premature activation at times when food is not available. The lower lethal time of field populations at 0 and −5 °C varied from 18 to 24 weeks and from 12 to 22 weeks, respectively. Morph type and sex had no influence on the cold hardiness of the overwintering adults. In addition, all cold tolerance parameters differed greatly between the laboratory population and field populations, implying that cold tolerance research based solely on laboratory populations may not be representative of field situations. We conclude from this study that the strong cold hardiness of H. axyridis in Europe may enable the species to establish in large parts of the continent.  相似文献   

12.
Sperm cryopreservation of red snapper (Lutjanus argentimaculatus) is essentially unexplored, although many species of the Lutjanidae family are considered to be high-value commercial species. The objective of this study was to develop a species-specific cryopreservation protocol for red snapper (L. argentimaculatus) sperm by optimizing cryoprotectants and cooling rates in the cryopreservation procedure. Ten cryoprotectants at four concentrations and two freezing protocols were examined in two separate experiments. In the first experiment, toxicity studies of dimethyl sulfoxide (DMSO), glycerol, propylene glycol (PG), ethylene glycol (EG), formamide, methanol, ethanol, sucrose, trehalose, and dimethylacetamide (DMA) on sperm motility were performed. Semen diluted 1:1 in Ringer solution were exposed to cryoprotectants at four final concentrations of 5%, 10%, 15%, or 20% for periods of 10, 20, 30, 40, 50, 60, 90, and 120 min at room temperature (25 °C). The cryoprotectants and concentrations that showed the least toxic effect on sperm motility were selected for cryopreservation trials. In the second experiment, selected cryoprotectants were then assessed for freezing capacity of sperm as follows: DMSO 5% and 10%, PG 5% and 10%, EG 5% and 10%, ethanol 5%, and methanol 5%. Semen was diluted 1:1 in Ringer solution and equilibrated with selected cryoprotectants for 10 min at room temperature. Sperm were frozen in a controlled-rate programmable freezer at four cooling rates of 3, 5, 10, and 12 °C/min from an initial temperature of 25 °C to final temperatures of −40 or −80 °C before plunging into liquid nitrogen. Sperm equilibrated in 10% DMSO and cooled at a rate of 10 °C/min to a final temperature of −80 °C had the highest motility (91.1 ± 2.2%) and viability (92.7 ± 2.3%) after thawing. The fertilization rate of frozen-thawed sperm (72.4 ± 2.4%) was not different (P > 0.05) from that of fresh sperm (75.5 ± 2.4%). This study apparently represents the first reported attempt for cryopreservation of L. argentimaculatus sperm.  相似文献   

13.
Freshwater invertebrates often disperse between discrete habitat patches via the production of dormant propagules. Being dispersed passively by animal vectors or wind, certain adaptations for exposures to terrestrial and aerial conditions like desiccation and freezing are required. In the present study, we investigate the mechanisms of survival and physiological adaptations due to desiccation and low temperatures in the statoblasts of two populations of the freshwater bryozoan Cristatella mucedo. Our results show that both sessoblasts and floatoblasts tolerate almost complete desiccation and subzero temperatures. Trehalose, a non-reducing disaccharide which has been related to desiccation tolerance, was detected by amperometric chromatography. However, due to the low concentrations found, it is unlikely that trehalose is playing a major part in desiccation tolerance of bryozoan statoblasts. Vitrification is assumed to be important in the survival of desiccation tolerant organisms. Differential scanning calorimetry revealed thermal transitions (Tg onset around 70 °C) in desiccated statoblasts, indicating that a vitreous matrix is present. During the exposure to subzero temperatures, freeze tolerance of statoblasts was confirmed by the detection of internal ice formation, which took place at a crystallisation temperature of between −6 °C and −12 °C.  相似文献   

14.
Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in their habitat. Slugs spontaneously froze at about − 4 °C when cooled under dry conditions, but freezing of body fluids was readily induced at − 1 °C when in contact with external ice crystals. All three species survived freezing for 2 days at − 1 °C, and some A. rufus and A. lusitanicus also survived freezing at − 2 °C. 1H NMR spectroscopy revealed that freezing of body fluids resulted in accumulation of lactate, succinate and glucose. Accumulation of lactate and succinate indicates that ATP production occurred via fermentative pathways, which is likely a result of oxygen depletion in frozen tissues. Glucose increased from about 6 to 22 μg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates.  相似文献   

15.
The hemlock looper, Lambdina fiscellaria, is an economically important insect pest of Canadian forests which overwinters as eggs. Although the hemlock looper causes extensive damages, no information on the mechanisms related to its cold tolerance is known. The objective of this study was to determine the effect of temperature and exposure duration on hemlock looper winter survival but also to identify seasonal supercooling capacity and cryoprotectant levels of three populations along a latitudinal gradient. As host plant may contribute to offspring overwintering success, cold tolerance of hemlock looper eggs from parents whose larvae were fed on three different tree species was also measured. Mean supercooling point (SCP) of hemlock looper eggs was lower than −30 °C from October through the following spring with values being as low as −47 °C in February. Trehalose was the most abundant sugar found in hemlock looper eggs with a peak concentration of 0.3 μg mg−1 DW−1. Glycerol, a polyol, was more often absent in eggs of the different populations and tree species tested in the study. When exposed to different temperature regimes for various periods of time, significant mortality of hemlock looper eggs occurred at higher temperatures than the mean SCP. Thus, hemlock looper could be considered as a chill tolerant species. No clear pattern of population and host plant effects on SCP and cryoprotectants was detected in this study. However, when exposed to different winter temperatures and exposure duration, hemlock looper from higher latitudes survived better (survival rates ranging between 0 and 89% at −20 °C) than those from lower latitudes (survival rates ranging between 0 and 56% at −20 °C). Our results may contribute to a better understanding of hemlock looper winter biology and thus facilitate predictions of outbreaks and range expansion.  相似文献   

16.
Cryopreservation of human tumour cells and tissue is a valuable tool for retrospective analysis and for the transport and handling of biopsy material. Tumour tissue consists of different cell types, which have different optimal freezing conditions, and extracellular matrix. A well-defined and authentic model system is required for developing new freezing protocols and media. This work describes the use of L929 and PC-3 spheroids as new model systems for freezing human tumours. Cell suspension and spheroids were frozen in different vessels (1 ml cryovials and a special, cryo-compatible 30 × 25 μl multi well plate) at slow rate (1 °C/min). Freezing media were combinations of culture or tumour transport medium (Liforlab®) with the cryoprotective agents, Me2SO, trehalose and modified starch. We also present a new method of evaluating the viability of three dimensional multicellular systems to compare thawed spheroids objectively. Best viability (70%) of L929 spheroids occurred with a combination of Liforlab® and starch hydrolysis product. The best cryopreservation results for spheroids were found with extracellular cryoprotectants, while optimum viability of single cells was achieved with Me2SO.  相似文献   

17.
Overwintering success is one of the key aspects affecting the development and outbreaks of the spruce bark beetle, Ips typographus (L.) populations. This paper brings detailed analysis of cold tolerance, and its influence on overwintering success, in two Central European populations of I. typographus during two cold seasons. Evidence for a supercooling strategy in overwintering adults is provided. The lower lethal temperature corresponds well to the supercooling point that ranges between −20 and −22 °C during winter months. The supercooled state is stabilized by the absence of internal ice nucleators and by seasonal accumulation of a mixture of sugars and polyols up to the sum concentration of 900 mM. The cryoprotective function of accumulated metabolites is probably based on increasing the osmolality and viscosity of supercooled body fluids and decreasing the relative proportion of water molecules available for lethal formation of ice nuclei. No activity of thermal hysteresis factors (stabilizers of supercooled state) was detected in hemolymph. Lethal times for 50% mortality (Lts50) in the supercooled state at −5, −10 or −15 °C are weeks (autumn, spring) or even months (winter), suggesting relatively little mortality caused by chill injury. Lts50 at −15 °C are significantly shorter in moist (6.9 days) than in dry (>42 days) microenvironment because there is higher probability of external ice nucleation and occurrence of lethal freezing in the moist situation.  相似文献   

18.
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (Me2SO). Me2SO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60 ± 2%. In addition, the number of metabolically active cells 24 h post-thaw, normalised to that before freezing, was found to be between 103 ± 4% and 91 ± 5%. This was found to be comparable to cells frozen using Me2SO. Although reduced (by 22 ± 2%, p = 0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using Me2SO, where the doubling time was significantly reduced (by 41 ± 4%, p = 0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications.  相似文献   

19.
Enzymic isolation, cryopreservation and culture of cells places considerable demand on intracellular antioxidant thiol status. Thiol status is carefully regulated in the cell by the balance of reduced and oxidized thiol species, including glutathione (GSH/GSSG) and l-cysteine (l-Cys/l-CySS disulphide). These play a pivotal role in redox signaling, cell attachment, proliferation and differentiation. Thiol depletion exposes cells to “thiol debt”, increasing their vulnerability to sustained pro-oxidant attack and injury. This study focused on the ability of l-Cys-enriched medium to enhance survival and growth of human peritoneal mesothelial cells (hPMC) after prolonged storage at −196 °C. HPMC derived from human omentum suspended in freezing solution (90 % foetal bovine serum, 10% dimethylsulfoxide) were cryopreserved at passage 1 for 6 years. Thawed cells cultured in medium M199 plus or minus l-Cys (0.25 mmol/L) were subjected to morphological, growth, ultrastructural studies, RT-PCR and cell signaling studies to assess cell function after cryopreservation. Viability of thawed cells was lower (85 ± 3%) than non-frozen control cells (98 ± 2% viable). l-Cys added to the cryopreservation fluid and the post-thaw medium increased cell viability to 94 ± 2%. Cell growth plus l-Cys was 2-fold greater compared with the minus l-Cys controls. The former had a cobblestone appearance. Ultrastructural studies showed lamellar bodies, indicative of surfactant production not evident in cells in minus l-Cys, which were a fibroblastic appearance. l-Cys treated hPMC constitutively expressed message for growth factors, TGFβ1, PDGF-A, PDGF-B and PDGFβ-receptor. The functionality of the PDGFβ-receptor was confirmed in fura-2 loaded cells with release of intracellular calcium when challenged with exogenous PDGF-BB. The addition of reduced thiols to culture media may have wider application in survival and enhance cell-based therapies.  相似文献   

20.
Summary The ability of adults and larvae of two species of perimylopid beetles (Hydromedion sparsutum, Perimylops antarcticus) to survive sub-zero temperatures was studied at Husvik, South Georgia in summer during October–December 1990. Experiments determined their survival at constant sub-zero temperatures, their lower lethal temperatures and individual supercooling points. The effects of cooling rates (0.015°, 0.5° and 2.0°C min–1) and starvation on survival were also assessed. Mean supercooling points of field-collected individuals of both species were in the range -3.0° to -5.4°C with Perimylops having a deeper capacity (ca. 1.5°C) for supercooling relative to Hydromedion. The former species also survived freezing temperatures significantly better than the latter and its mean lower lethal temperature was 2.5°C lower. At a constant temperature of -8.5°C, the median survival times for Perimylops adults and larvae were 19 and 26 h respectively, whilst both stages of Hydromedion died within 3 h. The three cooling rates resulted in significantly different median survival temperatures for adult Hydromedion with 0.5°C min–1 producing maximum survival. Prior starvation did not have a significant influence on the survival of either species at sub-zero temperatures although both adults survived less well. The results support field observations on the habitats and distribution of these insects, and suggest differing degrees of freezing tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号