首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permeability studies on red cell membranes of dog, cat, and beef   总被引:7,自引:6,他引:1  
Water permeability coefficients of dog, cat, and beef red cell membranes have been measured under an osmotic pressure gradient. The measurements employed a rapid reaction stop flow apparatus with which cell shrinking was measured under a relative osmotic pressure gradient of 1.25 to 1.64 times the isosmolar concentration. For the dog red cell the osmotic permeability coefficient is 0.36 cm4/(sec, osmol). The water permeability coefficient for the dog red cell under a diffusion gradient was also measured (rate constant = 0.10/msec). The ratio between the two permeabilities was used to calculate an equivalent pore radius of 5.9 A. This value agrees welt with an equivalent pore radius of 6.2 A obtained from reflection coefficients of nonelectrolyte water-soluble molecules, and is consistent with data on the permeability of the dog red cell membrane to glucose. These data provide evidence supporting the existence of equivalent pores in single biological membranes.  相似文献   

2.
The rate of ice formation was measured for Hedera helix L. cv. Thorndale (English ivy) bark exposed to -10 C. The cooling rate of bark exposed to -10 C was 31 C per minute. The water efflux rate required for ice formation to occur extracellularly was calculated from the rate of ice formation and the average cell diameter. The water potential difference driving the efflux of water to sites of extracellular ice was calculated from the sample temperature, osmotic water potential, and fraction of water frozen at a given freezing temperature. From the water efflux rate and water potential difference, the resistance of the barrier controlling movement of intracellular water to sites of extracellular ice was calculated. Comparison of the resistance of this barrier to water movement with the resistance of the cell membrane revealed that the membrane represented only 0.5% of the barrier resistance. Thus, membrane resistance can have little influence on the rate of water efflux and ice formation when bark is cooled at a rate of 31 C per minute. If ice formation occurred at the same rate in ivy bark as it occurred in a 10 mm MnCl(2) solution, the membrane resistance would still have represented only 1% of the resistance of the barrier to ice formation. Therefore, at a cooling rate of 31 C/minute, heat removal plays a large part in determining the rate of ice formation. At slower cooling rates experienced under natural freezing conditions the ability to remove heat would play an even larger role. It is concluded that under natural freezing conditions membrane resistance does not limit water efflux.  相似文献   

3.
Water permeability of the plasma membrane of a Characean internodalcell decreased with an increase in the osmotic pressure of theoutside of the cell, suggesting that the equivalent pore radiusof the water-filled pores becomes smaller with an increase inthe osmotic pressure. In contrast, the apparent membrane resistancedid not increase with an increase in the external osmotic pressure.These facts suggest that ions pass through the membrane mainlyvia pores other than those for bulk water flow. (Received October 22, 1986; Accepted May 22, 1987)  相似文献   

4.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

5.
Mechanisms of intracellular ice formation.   总被引:8,自引:2,他引:6       下载免费PDF全文
The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling.  相似文献   

6.
Miller RW 《Plant physiology》1978,62(5):741-745
Effects of physical environment on plasma membrane semipermeability and osmotic induction of changes in aqueous cytoplasmic volume were studied in vegetative and spore cells of a plant pathogenic fungus, Fusarium sulphureum. A direct method, employing a spin probe molecule that partitioned between intracellular aqueous and hydrophobic phases, allowed measurement of reversible water movement out of macroconidial cells and chlamydospores exposed to solutions of high osmolarity. Equilibrium distribution of the spin probe between intracellular aqueous and lipid phases was more rapid than movement of water in and out of the cells. The extent of water removal was exponentially dependent on osmotic strength. Some cells became irreversibly permeable to divalent cations on treatment with sodium chloride above 1.5 osmolar but addition of sucrose to the suspension medium at equivalent osmolar concentrations caused water removal without adversely affecting the viability. Sucrose also protected the plasma membrane against damage during freeze-drying. Induction of plasma membrane damage by osmotic shock or freeze-drying permitted rapid permeation of nickel ions. Neither slow equilibration of intracellular components with divalent paramagnetic cations nor partial permeability of damaged plasma membranes to these ions was observed.  相似文献   

7.
Most freshwater flagellates use contractile vacuoles (CVs) to expel excess water. We have used Chlamydomonas reinhardtii as a green model system to investigate CV function during adaptation to osmotic changes in culture medium. We show that the contractile vacuole in Chlamydomonas is regulated in two different ways. The size of the contractile vacuoles increases during cell growth, with the contraction interval strongly depending on the osmotic strength of the medium. In contrast, there are only small fluctuations in cytosolic osmolarity and plasma membrane permeability. Modeling of the CV membrane permeability indicates that only a small osmotic gradient is necessary for water flux into the CV, which most likely is facilitated by the aquaporin major intrinsic protein 1 (MIP1). We show that MIP1 is localized to the contractile vacuole, and that the expression rate and protein level of MIP1 exhibit only minor fluctuations under different osmotic conditions. In contrast, SEC6, a protein of the exocyst complex that is required for the water expulsion step, and a dynamin-like protein are upregulated under strong hypotonic conditions. The overexpression of a CreMIP1-GFP construct did not change the physiology of the CV. The functional implications of these results are discussed.  相似文献   

8.
The effect of temperature on membrane hydraulic conductivity   总被引:5,自引:0,他引:5  
The objective of this study was to use the temperature dependence of water permeability to suggest the physical mechanisms of water transport across membranes of osmotically slowly responding cells and to demonstrate that insight into water transport mechanisms in these cells may be gained from easily performed experiments using an electronic particle counter. Osmotic responses of V-79W Chinese hamster fibroblast cells were measured in hypertonic solutions at various temperatures and the membrane hydraulic conductivity was determined. The results were fit with the general Arrhenius equation with two free parameters, and also fit with two specific membrane models each having only one free parameter. Data from the literature including that for human bone marrow stem cells, hamster pancreatic islets, and bovine articular cartilage chondrocytes were also examined. The results indicated that the membrane models could be used in conjunction with measured permeability data at different temperatures to investigate the method of water movement across various cell membranes. This approach for slower responding cells challenges the current concept that the presence of aqueous pores is always accompanied by an osmotic water permeability value, P(f)>0.01 cm/s. The possibility of water transport through aqueous pores in lower-permeability cells is proposed.  相似文献   

9.
The osmotic water permeability of plasma membrane vesicles was examined after isolation from the roots of 7-day-old etiolated pea ( Pisum sativum, cv. Orlovchanin) seedlings grown at optimal temperature and those exposed to 1-day chilling at 8°C in the end of the growth period. The homogenization medium for obtaining plasma membranes was supplemented with either SH-reagents or protein phosphatase inhibitors. The plasmalemma vesicles were purified from the microsome fraction by means of two-phase polymer system. The osmotic water permeability of membrane vesicles was evaluated from the rate of their osmotically induced shrinkage. The lowering of growth temperature was accompanied by the increase in osmotic water permeability of plasmalemma. These changes occurred without the corresponding increase in aquaporin content or permeability of membrane lipid matrix. The membranes from cooled seedlings were markedly depleted in the content of SH-groups. Furthermore, the treatment of membrane samples with a thiol-reducing agent, tributylphosphine did not raise the SH-group content in membranes from chilled plants, unlike such changes in membranes from warm-grown plants. When the homogenization medium contained dithiothreitol and phenylarsine oxide (an inhibitor of tyrosine protein phosphatases), the osmotic permeability of plasmalemma in preparations from warm-grown seedlings also increased. Based on these results, it is supposed that aquaporin-mediated water permeability of membranes is regulated through different pathways under optimal and adverse conditions for plant growth. Direct action of endogenous SH redox regulators on aquaporin activity is likely under optimal growth conditions, while protein phosphatase might mediate changes in aquaporin activity under unfavorable growth conditions.  相似文献   

10.
Ebertz SL  McGann LE 《Cryobiology》2002,45(2):109-117
A human corneal equivalent is under development with potential applications in pharmaceutical testing, biomedical research, and transplantation, but the ability to distribute this engineered tissue, depends on successful cryopreservation. Tissue recovery after exposure to conditions during cryopreservation depends on the response of its constituent cells to the changing environment as ice forms and solutes concentrate. This study defines the osmotic properties that define the rate of water movement across the plasma membrane of isolated human corneal endothelial, stroma, and epithelial cells. Cells were transferred from an isotonic (300 mosm/kg) to an anisotonic (150-1500 mosm/kg) solution at constant temperature, and cell volumes monitored using an electronic particle counter. Histograms describing cell volume changes over time after anisosmotic exposure allowed calculation of hydraulic conductivity (L(p)) and osmotically inactive volume fraction (V(b)). Experimental values for L(p) at 4, 13, 22, and 37 degrees C were used to determine the Arrhenius activation energy (E(a)). The L(p) for endothelial, stroma, and epithelial cells at 37 degrees C was 1.98+/-0.32,1.50+/-0.30, and 1.19+/-0.14 microm/min/atm, and the V(b) was 0.28, 0.27, and 0.41, respectively. The E(a) for endothelial, stroma, and epithelial cells was 14.8, 12.0, and 14.1 kcal/mol, respectively, suggesting the absence of aqueous pores. These osmotic parameters and temperature dependencies allow simulation of osmotic responses of human corneal cells to cryopreservation conditions, allowing amount of supercooling to be calculated to indicate the likelihood of intracellular freezing. Simulations show that differences in the osmotic parameters for the constituent cells in the bioengineered cornea result in significant implications for cryopreservation of the engineered corneal equivalent.  相似文献   

11.
BackgroundStrong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability.MethodWe here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.Results and conclusionsWe show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.General significanceThis study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.  相似文献   

12.
Plasma membrane vesicles have been widely employed to understand the biophysics of water movements, especially when active aquaporins are present. In general, water permeability coefficients in these preparations outcome from the analysis of the osmotic response of the vesicles by means of light scattering. As from now, this is possible by following a theoretical approach that assumes that scattered light follows a single exponential function and that this behavior is the consequence of vesicle volume changes due to an osmotic challenge. However, some experimental data do not necessarily fit to single exponentials but to double ones. It is argued that the observed double exponential behavior has two possible causes: different vesicle population in terms of permeability or in terms of size distribution. As classical models cannot identify this source of heterogeneity, a mathematical modeling approach was developed based on phenomenological equations of water transport. In the three comparative models presented here, it was assumed that water moves according to an osmotic mechanism across the vesicles, and there is no solute movement across them. Interestingly, when tested in a well described plasma membrane vesicle preparation, the application of these models indicates that the source of heterogeneity in the osmotic response is vesicles having different permeability, clearly discarding the variable size effect. In conclusion, the mathematical approach presented here allows to identify the source of heterogeneity; this information being of particular interest, especially when studying gating mechanisms triggered in water channel activity.  相似文献   

13.
The failure of hydrodynamic analysis to define pore size in cell membranes   总被引:2,自引:0,他引:2  
The equivalent pore theory predicts that the size of water transporting pores can be calculated from the ratio of osmotic (Pf, cm . s-1) to diffusive (Pd, cm . s-1) water permeability. Determinations of Pf and Pd in human red cells within the last thirty years have increased the ratio of Pf to Pd. According to the equivalent pore theory the pore diameter has increased from 9 A to 25 A. A pore diameter of 25 A is not compatible with the permeability characteristics of the red cell membrane. We conclude that the equivalent pore theory fails to determine pore size in red blood cells. We suggest that water transporting pores in human red cells transport water molecules in a single file fashion.  相似文献   

14.
15.
Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase.  相似文献   

16.
The effect of plasma membrane water permeability on the rate of changes in the volume of principal cells of collecting ducts of the outer substantia medullaris under conditions of hypoosmotic shock has been studied. Changes in cell volume were studied by the fluorescent method. It was shown that the hypotonic shock induced a rapid increase in the cell volume with the characteristic time that depended on plasma membrane water permeability. The decrease in volume occurred much more slowly, and the rate of volume decrease directly correlated with the rate of swelling. The inhibition of potassium transport by barium chloride decreased the rate of volume restoration, without affecting substantially the duration of the swelling phase. The inhibition of mercury-sensitive water channels by mercury caused a significant increase in the time of both cell swelling and volume restoration. It was concluded that the state of water channels largely determines the rate of the regulatory response of epithelial cells of collecting ducts to hypoosmotic shock and affects the exchange of cell osmolites.  相似文献   

17.
Molecular dynamics simulations of aquaporin Z homotetramer which is a membrane protein facilitating rapid water movement through the plasma membrane of Escherichia coli were performed. Initial configurations were taken from the open and closed states of crystal structures separately. The resulting water osmotic permeability (pf) and diffusive permeability (pd) displayed distinct features. Consistent with previous studies, the side chain conformation of arginine189 was found to mediate the water permeability. A potential of mean force (PMF) as a function of the distance between NH1 of R189 and carbonyl oxygen of A117 was constructed based on the umbrella sampling technique. There are multiple local minima and transition states on the PMF. The assignment of the open or closed state was supported by the permeability pf, calculated within trajectories in umbrella sampling simulations. Our study disclosed a detailed mechanism of the gated water transport.  相似文献   

18.
19.
 We have developed a method for measurement of plasma membrane water permeability (P f) in intact cells using laser scanning confocal microscopy. The method is based on confocal recording of the fluorescence intensity emitted by calcein-loaded adherent cells during osmotic shock. P f is calculated as a function of the time constant in the fluorescence intensity change, the cell surface-to-volume ratio and the fractional content of the osmotically active cell volume. The method has been applied to the measurement of water permeability in MDCK cells. The cells behaved as linear osmometers in the interval from 100 to 350 mosM. About 57% of the total cell volume was found to be osmotically inactive. Water movement across the plasma membrane in intact MDCK cells was highly temperature dependent. HgCl2 had no effect on water permeability, while amphotericin B and DMSO significantly increased P f values. The water permeability in MDCK cells transfected with aquaporin 2 was an order of magnitude higher than in the intact MDCK cell line. The water permeability of the nuclear membrane in both cell lines was found to be unlimited. Thus the intranuclear fluid belongs to the osmotically active portion of the cell. We conclude that the use of confocal microscopy provides a sensitive and reproducible method for measurement of water permeability in different types of adherent cells and potentially for coverslip-attached tissue preparations. Received: 12 June 1999 / Revised version: 21 February 2000 / Accepted: 25 February 2000  相似文献   

20.
Plasma membrane isolated from microsomal membranes of pea seedling root and shoot cells by means of aqueous two-phase polymer system was separated by flotation in discontinuous OptiPrep gradient into “light” (≤1.146 g/cm3) and “heavy” (≥1.146 g/cm3) fractions. Osmotic water permeability of plasma membrane and its two fractions was investigated by inducing transmembrane osmotic gradient on the vesicle membrane and recording the kinetics of vesicle osmotic shrinkage by the stopped-flow method. Rate constants of osmotic shrinkage and coefficients of osmotic water permeability of the membranes were estimated on the basis of the kinetic curve approximation by exponential dependencies and using electron microscope data on vesicles sizes. In plasma membrane and its fractions the content of sterols and PIP1 aquaporins was determined. It was found that in “light” PM fractions from both roots and shoots the content of PIP1 aquaporins and sterols was higher and the osmotic water permeability coefficient was lower than in “heavy” fractions of plasma membrane. The results indicate that plasma membrane of roots and shoots is heterogeneous in osmotic water permeability. This heterogeneity may be related with the presence of microdomains with different content of aquaporins and sterols in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号