首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ·cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ·cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ·cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ·cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

2.
A simple, sensitive, and rapid method is presented for the determination of deoxyribonucleic acid (DNA) in both gram-positive and gram-negative bacteria. It is based upon the fluorometric determination of DNA with ethidium bromide after alkaline digestion of the bacteria to hydrolyze the interfering ribonucleic acid. The assay takes less than 2 hr. Its sensitivity is at least 0.2 μg of DNA in a final solution of 4 ml and it uses commonly available filter or double monochromator fluorometers. Judicious choice of light source and filters allows an additional 10-fold increase in sensitivity with a filter fluorometer. Turbidity caused by bacteria or insoluble polysaccharides does not interfere with the fluorescence measurements. There was no significant difference between the results obtained with this method and those obtained with the indole and diphenylamine methods when these assays were applied to Escherichia coli and sucrose- or glucose-grown Streptococcus mutans. The method was also tested by determining the specific growth rate of E. coli. This new procedure should be especially useful for the determination of bacterial DNA in dilute suspensions and for the estimation of bacterial growth or DNA replication where more conventional methods are not applicable or sensitive enough.  相似文献   

3.
A real-time assay for CpG-specific cytosine-C5 methyltransferase activity has been developed. The assay applies a break light oligonucleotide in which the methylation of an unmethylated 5′-CG-3′ site is enzymatically coupled to the development of a fluorescent signal. This sensitive assay can measure rates of DNA methylation down to 0.34 ± 0.06 fmol/s. The assay is reproducible, with a coefficient of variation over six independent measurements of 4.5%. Product concentration was accurately measured from fluorescence signals using a linear calibration curve, which achieved a goodness of fit (R2) above 0.98. The oligonucleotide substrate contains three C5-methylated cytosine residues and one unmethylated 5′-CG-3′ site. Methylation yields an oligonucleotide containing the optimal substrate for the restriction enzyme GlaI. Cleavage of the fully methylated oligonucleotide leads to separation of fluorophore from quencher, giving a proportional increase in fluorescence. This method has been used to assay activity of DNMT1, the principle maintenance methyltransferase in human cells, and for the kinetic characterization of the bacterial cytosine-C5 methyltransferase M.SssI. The assay has been shown to be suitable for the real-time monitoring of DNMT1 activity in a high-throughput format, with low background signal and the ability to obtain linear rates of methylation over long periods, making this a promising method of high-throughput screening for inhibitors.  相似文献   

4.
A new real-time PCR assay was successfully developed using a TaqMan fluorescence probe for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific primers and probe were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were compared to those of all available 16S rRNA genes in the GenBank database. The assay, targeting 16S rRNA gene, was evaluated using DNA from a pure culture of L. thermotolerans, DNA from the closely related bacteria Lactobacillus mucosae DSM 13345T and Lactobacillus fermentum JCM 1173T, and DNA from other lactic acid bacteria in quantitative experiments. Serial dilutions of L. thermotolerans DNA were used as external standards for calibration. The minimum detection limit of this technique was 1.84 × 103 cells/ml of an L. thermotolerans pure culture. The assay was then applied to chicken feces in two different trials. In the first trial, the cell population was 104 cells/g feces on day 4 and 105 cells/g feces on days 11 to 18. However, cell populations of 106 to 107 cells/g feces were detected in the second trial. The total bacterial count, measured by 4′,6-diamidino-2-phenylindole (DAPI) staining, was approximately 1011 cells/g feces. These results suggest that in general, L. thermotolerans is a normal member of the chicken gut microbiota, although it is present at relatively low levels in the feces.  相似文献   

5.
We describe a new assay for in vitro repair of oxidatively induced DNA double-strand breaks (DSBs) by HeLa cell nuclear extracts. The assay employs linear plasmid DNA containing DNA DSBs produced by the radiomimetic drug bleomycin. The bleomycin-induced DSB possesses a complex structure similar to that produced by oxidative processes and ionizing radiation. Bleomycin DSBs are composed of blunt ends or ends containing a single 5′-base overhang. Regardless of the 5′-end structure, all bleomycin-induced DSBs possess 3′-ends blocked by phosphoglycolate. Cellular extraction and initial end joining conditions for our assay were optimized with restriction enzyme-cleaved DNA to maximize ligation activity. Parameters affecting ligation such as temperature, time, ionic strength, ATP utilization and extract protein concentration were examined. Similar reactions were performed with the bleomycin-linearized substrate. In all cases, end-joined molecules ranging from dimers to higher molecular weight forms were produced and observed directly in agarose gels stained with Vistra Green and imaged with a FluorImager 595. This detection method is at least 50-fold more sensitive than ethidium bromide and permits detection of ≤0.25 ng double-stranded DNA per band in post-electrophoretically stained agarose gels. Consequently, our end-joining reaction requires ≤100 ng substrate DNA and ≥50% conversion of substrate to product is achieved with simple substrates such as restriction enzyme-cleaved DNA. Using our assay we have observed a 6-fold lower repair rate and a lag in reaction initiation for bleomycin-induced DSBs as compared to blunt-ended DNA. Also, end joining reaction conditions are DSB end group dependent. In particular, bleomycin-induced DSB repair is considerably more sensitive to inhibition by increased ionic strength than repair of blunt-ended DNA.  相似文献   

6.
The determination of cell numbers or biomass in laboratory cultures or environmental samples is usually based on turbidity measurements, viable counts, biochemical determinations (e.g., protein and lipid measurements), microscopic counting, or recently, flow cytometric analysis. In the present study, we developed a novel procedure for the sensitive quantification of microbial cells in cultures and most-probable-number series. The assay combines fluorescent nucleic acid staining and subsequent fluorescence measurement in suspension. Six different fluorescent dyes (acridine orange, DAPI [4′,6′-diamidino-2-phenylindole], ethidium bromide, PicoGreen, and SYBR green I and II) were evaluated. SYBR green I was found to be the most sensitive dye and allowed the quantification of 50,000 to up to 1.5 × 108 Escherichia coli cells per ml sample. The rapid staining procedure was robust against interference from rRNA, sample fixation by the addition of glutaric dialdehyde, and reducing agents such as sodium dithionite, sodium sulfide, and ferrous sulfide. It worked well with phylogenetically distant bacterial and archaeal strains. Excellent agreement with optical density measurements of cell increases was achieved during growth experiments performed with aerobic and sulfate-reducing bacteria. The assay offers a time-saving, more sensitive alternative to epifluorescence microscopy analysis of most-probable-number dilution series. This method simplifies the quantification of microbial cells in pure cultures as well as enrichments and is particularly suited for low cell densities.  相似文献   

7.
Studies of time-dependent drug and environmental effects on single, live bacterial cells would benefit significantly from a permeable, nonperturbative, long-lived fluorescent stain specific to the nucleoids (chromosomal DNA). The ideal stain would not affect cell growth rate or nucleoid morphology and dynamics, even during laser illumination for hundreds of camera frames. In this study, time-dependent, single-cell fluorescence imaging with laser excitation and a sensitive electron-multiplying charge-coupled-device (EMCCD) camera critically tested the utility of “dead-cell stains” (SYTOX orange and SYTOX green) and “live-cell stains” (DRAQ5 and SYTO 61) and also 4′,6-diamidino-2-phenylindole (DAPI). Surprisingly, the dead-cell stains were nearly ideal for imaging live Escherichia coli, while the live-cell stains and DAPI caused nucleoid expansion and, in some cases, cell permeabilization and the halting of growth. SYTOX orange performed well for both the Gram-negative E. coli and the Gram-positive Bacillus subtilis. In an initial application, we used two-color fluorescence imaging to show that the antimicrobial peptide cecropin A destroyed nucleoid-ribosome segregation over 20 min after permeabilization of the E. coli cytoplasmic membrane, reminiscent of the long-term effects of the drug rifampin. In contrast, the human cathelicidin LL-37, while similar to cecropin A in structure, length, charge, and the ability to permeabilize bacterial membranes, had no observable effect on nucleoid-ribosome segregation. Possible underlying causes are suggested.  相似文献   

8.
Inorganic polyphosphate (PolyP) is a biological polymer that plays important roles in the cell physiology of both prokaryotic and eukaryotic organisms. Among the available methods for PolyP localization and quantification, a 4’,6-diamidino-2-phenylindole(DAPI)-based assay has been used for visualization of PolyP-rich organelles. Due to differences in DAPI permeability to different compartments and/or PolyP retention after fixation, a general protocol for DAPI-PolyP staining has not yet been established. Here, we tested different protocols for DAPI-PolyP detection in a range of samples with different levels of DAPI permeability, including subcellular fractions, free-living cells and cryosections of fixed tissues. Subcellular fractions of PolyP-rich organelles yielded DAPI-PolyP fluorescence, although those with a complex external layer usually required longer incubation times, previous aldehyde fixation and/or detergent permeabilization. DAPI-PolyP was also detected in cryosections of OCT-embedded tissues analyzed by multiphoton microscopy. In addition, a semi-quantitative fluorimetric analysis of DAPI-stained fractions showed PolyP mobilization in a similar fashion to what has been demonstrated with the use of enzyme-based quantitative protocols. Taken together, our results support the use of DAPI for both PolyP visualization and quantification, although specific steps are suggested as a general guideline for DAPI-PolyP staining in biological samples with different degrees of DAPI and PolyP permeability.Key words: DAPI, polyphosphate, fluorescence, fluorimetry  相似文献   

9.
DNA probes with conjugated minor groove binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, allowing shorter probes to be used for hybridization based assays. In this paper, sequence specificity of 3′-MGB probes was explored. In comparison with unmodified DNA, MGB probes had higher melting temperature (Tm) and increased specificity, especially when a mismatch was in the MGB region of the duplex. To exploit these properties, fluorogenic MGB probes were prepared and investigated in the 5′-nuclease PCR assay (real-time PCR assay, TaqMan assay). A 12mer MGB probe had the same Tm (65°C) as a no-MGB 27mer probe. The fluorogenic MGB probes were more specific for single base mismatches and fluorescence quenching was more efficient, giving increased sensitivity. A/T rich duplexes were stabilized more than G/C rich duplexes, thereby leveling probe Tm and simplifying design. In summary, MGB probes were more sequence specific than standard DNA probes, especially for single base mismatches at elevated hybridization temperatures.  相似文献   

10.
We present here a new assay that is based on the idea of the molecular beacon. This assay makes it possible to investigate two proteins interacting with DNA at two binding sites that are close to each other. The effectiveness of the test depends on the exclusive binding of three DNA fragments in the presence of two proteins, and the monitoring of the process depends upon observing the quenching of two independent fluorescence donors. As a model we used the components of the heterodimeric ecdysteroid receptor proteins ultraspiracle (Usp) and ecdysone receptor (EcR) from Drosophila melanogaster and a response element from the promoter of the hsp27 gene. The response element consists of two binding sites (half-sites) for the DNA binding domains (DBDs). We have shown that protein–protein interactions mediate cooperative binding of the ecdysteroid receptor DBDs to a hsp27pal response element. The analysis of the microscopic dissociation constants obtained with the DMB led to the conclusion that there was increased affinity of UspDBD to the 5′ half-site in the presence of EcRDBD when the 3′ half-site was occupied, and increased affinity of EcRDBD to the 3′ half-site when the 5′ half-site was occupied.  相似文献   

11.
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5′-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.  相似文献   

12.
Flow Cytometric Analysis of Marine Bacteria with Hoechst 33342   总被引:18,自引:8,他引:10       下载免费PDF全文
We investigated the accuracy and precision of flow cytometric (FCM) estimates of bacterial abundances using 4′, 6-diamidino-2-phenylindole (DAPI) and Hoechst 33342 (HO342, a bisbenzamide derivative) on paraformaldehyde-fixed seawater samples collected from two stations near Oahu, Hawaii. The accuracy of FCM estimates was assessed against direct counts by using epifluorescence microscopy. DAPI and HO342 differ in two aspects of their chemistry that make HO342 better suited for staining marine heterotrophic bacteria for FCM analysis. These differences are most important in studies of open-ocean ecosystems that require dual-beam FCM analysis to clearly separate heterotrophic bacterial populations from populations of photosynthetic Prochlorococcus spp. Bacterial populations were easier to distinguish from background fluorescence when stained with HO342 than when stained with DAPI, because HO342 has a higher relative fluorescence quantum yield. A substantially higher coefficient of variation of blue fluorescence, which was probably due to fluorescent complexes formed by DAPI with double-stranded RNA, was observed for DAPI-stained populations. FCM estimates averaged 2.0 and 12% higher than corresponding epifluorescence microscopy direct counts for HO342 and DAPI-stained samples, respectively. A paired-sample t test between FCM estimates and direct counts found no significant difference for HO342-stained samples but a significant difference for DAPI-stained samples. Coefficients of variation of replicate FCM abundance estimates ranged from 0.63 to 2.9% (average, 1.5%) for natural bacterial concentrations of 6 × 105 to 15 × 105 cells ml-1.  相似文献   

13.
Chanson A  Taiz L 《Plant physiology》1985,78(2):232-240
Corn (Zea mays L. cv Trojan T929) coleoptile membranes were fractionated on sucrose density gradients, and ATP-dependent proton pumping activity was localized by the techniques of [14C]methylamine uptake and quinacrine fluorescence quenching. Two peaks of proton pumping activity were detected: a light peak (1.07 grams/cubic centimeter) corresponding to the previously characterized tonoplast-type H+-ATPase, and a second peak (1.13 grams/cubic centimeter) which coincided with the Golgi markers, latent UDPase, and glucan synthase I. The second peak was lighter than that of the plasma membrane marker, uridine diphosphoglucose-sterol glucosyltransferase (1.16 grams/cubic centimeter) and was not inhibited by vanadate, an inhibitor of the plasma membrane ATPase. The activity was also better correlated with the Golgi cisternae marker, glucan synthase I, than with latent UDPase, a secretory vesicle marker, but a secretory vesicle location cannot be ruled out. The tonoplast-type and Golgi proton pumps were similar in several respects, including a pH optimum at 7.2, stimulation by chloride, inhibition by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide (DCCD), insensitivity to oligomycin and azide, and nucleotide specificity for Mg2+-ATP. However, the Golgi H+ pump was much less sensitive to nitrate and iodide, and more sensitive to the anion channel blockers, 4-acetamido-4′-isothiocyano-2,2′-stilbene sulfonic acid (SITS) and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) than the tonoplast-type H+-pump. The Golgi pump, but not the tonoplast-type pump, was stimulated by valinomycin in the presence of KCl. It is concluded that the Golgi of corn coleoptiles contains a KCl-stimulated H+-ATPase which can acidify the interior of Golgi cisternae and associated vesicles.  相似文献   

14.
Potassium dichromate and formalin reduced the viability of Cryptosporidium parvum oocysts as assessed by inclusion or exclusion of 4′,6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) and excystation. Some formalin-treated oocysts containing dead sporozoites excluded PI; that this fluorogenic assay relies not solely upon exclusion of PI but also upon highlighting of sporozoite nuclei by DAPI is reiterated.  相似文献   

15.
16.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

17.
A novel signal generation principle suitable for real time and end-point detection of specific PCR products in a closed tube is described. Linear DNA probes were labeled at their 5′-ends with a stable, fluorescent terbium chelate. The fluorescence intensity of this chelate is lower when it is coupled to single-stranded DNA than when the chelate is free in solution. The synthesized probes were used in the real time monitoring of PCR using a prototype instrument that consisted of a fluorometer coupled to a thermal cycler. When the probe anneals to a complementary target amplicon, the 5′→3′ exonucleolytic activity of DNA polymerase detaches the label from the probe. This results in an enhanced terbium fluorescence signal. Since terbium has a long excited state lifetime, its fluorescence can be measured in a time-resolved manner, which results in a low background fluorescence and a 1000-fold signal amplification. The detection method is quantitative over an extremely wide linear range (at least 10–107 initial template molecules). The label strategy can easily be combined with existing label technologies, such as TaqMan 5′-exonuclease assays, in order to carry out multiplex assays that do not suffer from overlapping emission peaks of the fluorophores.  相似文献   

18.
We have examined binding of the CREB B-ZIP protein domain to double-stranded DNA containing a consensus CRE sequence (5′-TGACGTCA-3′), the related PAR, C/EBP and AP-1 sequences and the unrelated SP1 sequence. DNA binding was assayed in the presence or absence of MgCl2 and/or KCl using two methods: circular dichroism (CD) spectroscopy and electrophoretic mobility shift assay (EMSA). The CD assay allows us to measure equilibrium binding in solution. Thermal denaturation in 150 mM KCl indicates that the CREB B-ZIP domain binds all the DNA sequences, with highest affinity for the CRE site, followed by the PAR (5′-TAACGTTA-3′), C/EBP (5′-TTGCGCAA-3′) and AP-1 (5′-TGAGTCA-3′) sites. The addition of 10 mM MgCl2 diminished DNA binding to the CRE and PAR DNA sequences and abolished binding to the C/EBP and AP-1 DNA sequences, resulting in more sequence-specific DNA binding. Using ‘standard’ EMSA conditions (0.25× TBE), CREB bound all the DNA sequences examined. The CREB–CRE complex had an apparent Kd of ~300 pM, PAR of ~1 nM, C/EBP and AP-1 of ~3 nM and SP1 of ~30 nM. The addition of 10 mM MgCl2 to the polyacrylamide gel dramatically altered sequence-specific DNA binding. CREB binding affinity for CRE DNA decreased 3-fold, but binding to the other DNA sequences decreased >1000-fold. In the EMSA, addition of 150 mM KCl to the gels had an effect similar to MgCl2. The magnesium concentration needed to prevent non-specific electrostatic interactions between CREB and DNA in solution is in the physiological range and thus changes in magnesium concentration may be a cellular signal that regulates gene expression.  相似文献   

19.
Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155 and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 3′end-processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 3′end-processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant activities using an uncleaved substrate. With 3′end-processing assay, IC50 were 0.4 µM, 0.9 µM (FC = 2.25) and 1.2 µM (FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay. In concerted integration, integrases were less sensitive to RAL than in ST or 3′P but mutants were more resistant to RAL than WT.  相似文献   

20.
DNA helicases are responsible for unwinding the duplex DNA, a key step in many biological processes. UvrD is a DNA helicase involved in several DNA repair pathways. We report here crystal structures of Deinococcus radiodurans UvrD (drUvrD) in complex with DNA in different nucleotide-free and bound states. These structures provide us with three distinct snapshots of drUvrD in action and for the first time trap a DNA helicase undergoing a large-scale spiral movement around duplexed DNA. Our structural data also improve our understanding of the molecular mechanisms that regulate DNA unwinding by Superfamily 1A (SF1A) helicases. Our biochemical data reveal that drUvrD is a DNA-stimulated ATPase, can translocate along ssDNA in the 3′-5′ direction and shows ATP-dependent 3′-5′, and surprisingly also, 5′-3′ helicase activity. Interestingly, we find that these translocase and helicase activities of drUvrD are modulated by the ssDNA binding protein. Analysis of drUvrD mutants indicate that the conserved β-hairpin structure of drUvrD that functions as a separation pin is critical for both drUvrD’s 3′-5′ and 5′-3′ helicase activities, whereas the GIG motif of drUvrD involved in binding to the DNA duplex is essential for the 5′-3′ helicase activity only. These special features of drUvrD may reflect its involvement in a wide range of DNA repair processes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号