首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs ofXenopus inv and mouse inv proteins may regulate their function in different ways.  相似文献   

2.
Members of the EGF-CFC family facilitate signaling by a subset of TGFbeta superfamily ligands that includes the nodal-related factors and GDF1/VG1. Studies in mouse, zebrafish, and chick point to an essential role for EGF-CFC proteins in the action of nodal/GDF1 signals in the early establishment of the mesendoderm and later visceral left-right patterning. Antisense knockdown of the only known frog EGF-CFC factor (FRL1), however, has argued against an essential role for this factor in nodal/GDF1 signaling. To address this apparent paradox, we have identified two additional Xenopus EGF-CFC family members. The three Xenopus EGF-CFC factors show distinct patterns of expression. We have examined the role of XCR2, the only Xenopus EGF-CFC factor expressed in post-gastrula embryos, in embryogenesis. Antisense morpholino oligonucleotide-mediated depletion of XCR2 disrupts left-right asymmetry of the heart and gut. Although XCR2 is expressed bilaterally at neurula stage, XCR2 is required on the left side, but not the right side, for normal left-right patterning. Left-side expression of XNR1 in the lateral plate mesoderm depends on XCR2, whereas posterior bilateral expression of XNR1 does not, suggesting that distinct mechanisms maintain XNR1 expression in different regions of neurula-tailbud embryos. Ectopic XCR2 on the right side initiates premature right-side expression of XNR1 and XATV, and can reverse visceral patterning. This activity of XCR2 depends on its co-receptor function. These observations indicate that XCR2 has a crucial limiting role in maintaining a bistable asymmetry in nodal family signaling across the left-right axis.  相似文献   

3.
Calmodulin regulates the function of numerous proteins by binding to short regions on the target molecule. IQ motifs, which are found in over 100 human proteins, appear in tandem repeats and bind calmodulin in the absence of Ca(2+). One of these IQ-containing proteins, IQGAP1, interacts with several targets, including Cdc42, beta-catenin, E-cadherin, and actin, in a calmodulin-regulated manner. To elucidate the molecular mechanism by which apocalmodulin and Ca(2+)/calmodulin differentially regulate IQGAP1, a series of constructs of IQGAP1 with selected point mutations of the four tandem IQ motifs were generated. Mutating the basic charged arginine residues in all four IQ motifs abrogated binding of IQGAP1 to apocalmodulin, but had no effect on its interaction with Ca(2+)/calmodulin. Analysis of IQGAP1 constructs with point mutations in single, double, or triple IQ motifs revealed that apocalmodulin bound only to IQ3 and IQ4. By contrast to the arginine mutant constructs, mutation of selected hydrophobic residues in the IQ motifs produced an IQGAP1 protein incapable of binding either apocalmodulin or Ca(2+)/calmodulin. These results, which differ from the conventional model of Ca(2+)-independent binding of calmodulin to IQ motifs, provide insight into the complexity of the molecular interactions between calmodulin and IQ motifs.  相似文献   

4.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

5.
6.
Myosin V motors regulate secretion and cell division in eukaryotes. How MyoV activity is differentially regulated by essential and calmodulin light chain binding remains unclear. We have used NMR spectroscopy to compare the dynamic behavior of Mlc1p, a budding yeast essential light chain, with that of the Xenopus laevis calmodulin. Both proteins have a similar structure and bind similar target proteins but differ in the mechanism by which they interact with the myosin V IQ1. This interaction is essential for MyoV activity. Here, we show that the rigid conformation of the loop connecting the two EF-hand motifs of the Mlc1p N-lobe explains its differential ability to interact with myosin V IQ1. Moreover, we show that the maintenance of the N-lobe structure is required for the essential function of Mlc1p in vivo. These data show that the core characteristics of myosin light chain N-lobes differentiate Mlc1p and calmodulin binding capability.  相似文献   

7.
In Xenopus, multiple nodal-related genes are expressed in the organizer region. Among them, only Xenopus nodal related-1 (Xnr-1) is expressed unilaterally in the left lateral plate mesoderm (LPM) at late neurula-early tailbud stage. To elucidate the essential role of Xnr-1 for left-right specification, loss of function experiments using antisense morpholino oligonucleotides (MOs) targeting three different regions of Xnr-1 were performed. Left-side injection of Xnr-1 MO suppresses the left-side specific genes such as Xnr-1, Xenopus antivin (lefty) and Xenopus pitx2 and randomizes cardiac and visceral left-right orientation. In contrast, paraxial bilateral expression of Xnr-1 along the posterior notochord is not affected by the Xnr-1 MO. In embryos injected with the Xnr-1 MO, morphology of dorsal axial structures is normal and dorsal expression of sonic hedgehog and TGF-beta5 is not changed. Right-side injection of Nodal protein, or polyethyleneimine-based gene transfer of Xnr-1 mRNA in the right LPM induces Xnr-1 and pitx2 in the same side and fully (more than 90%) reverses situs of the internal organs. Left-side injection of Nodal protein restores normal left-right orientation in the embryos that were injected with Xnr-1 MO into the left blastomere and would cause randomization of the left-right axis without the Nodal injection. Taken together, unilateral expression of Xnr-1 in the left LPM directs the orientation of the left-right axis by driving the left-specific gene cascade. Knockdown of Xnr-1 function by the MOs suggests that Xnr-1 is indispensable only for the left-right orientation and dispensable for other embryonic axes probably owing to the redundancy in the function of multiple Xnrs.  相似文献   

8.
A variety of TGF-beta-related ligands regulate the left-right asymmetry of vertebrates but the involvement of TGF-betas in left-right specification has not been reported. We assessed whether TGF-beta signaling is involved in the left-right specification of Xenopus post-gastrula embryos by microinjecting Xenopus TGF-beta5 protein into the left or right flank of neurula-tailbud embryos. Injection on the right side of neurulae caused left-right reversal of the internal organs in 93% of the embryos, while injection on the left side caused less than 5% left-right reversal. Expression of Xenopus nodal related-1 (Xnr-1 ), Xenopus antivin and Xenopus Pitx2, which are normally expressed on the left, was unaltered by the left-side injection. In contrast, right-side injection into neurulae induced the expression of these genes predominantly on the right side. Right-side injection into tailbud embryos caused bilateral expression of these handed genes. Time course analysis of asymmetric gene expression revealed that Xnr-1 could be induced by TGF-beta5 at late neurula stage, while antivin and Pitx2 could be induced by TGF-beta5 at the latertail bud stage. Injection of the antisense morpholino oligonucleotide against Xenopus TGF-beta5 into the left dorsal blastomere inhibited the normal left-handed expression of Xnr-1 and Pitx2, and caused the organ reversal in the injected embryos. These results suggest that normal left-right balance of endogenous TGF-beta5 signaling in the neurula embryo may be needed to determine the laterality of the asymmetric genes and to generate the correct left-right axis.  相似文献   

9.
Vertebrate organisms are characterized by dorsal-ventral and left-right asymmetry. The process that establishes left-right asymmetry during vertebrate development involves bone morphogenetic protein (BMP)-dependent signaling, but the molecular details of this signaling pathway remain poorly defined. This study tests the role of the BMP type I receptor ACVRI in establishing left-right asymmetry in chimeric mouse embryos. Mouse embryonic stem (ES) cells with a homozygous deletion at Acvr1 were used to generate chimeric embryos. Chimeric embryos were rescued from the gastrulation defect of Acvr1 null embryos but exhibited abnormal heart looping and embryonic turning. High mutant contribution chimeras expressed left-side markers such as nodal bilaterally in the lateral plate mesoderm (LPM), indicating that loss of ACVRI signaling leads to left isomerism. Expression of lefty1 was absent in the midline of chimeric embryos, but shh, a midline marker, was expressed normally, suggesting that, despite formation of midline, its barrier function was abolished. High-contribution chimeras also lacked asymmetric expression of nodal in the node. These data suggest that ACVRI signaling negatively regulates left-side determinants such as nodal and positively regulates lefty1. These functions maintain the midline, restrict expression of left-side markers, and are required for left-right pattern formation during embryogenesis in the mouse.  相似文献   

10.
11.
Lieto-Trivedi A  Coluccio LM 《Biochemistry》2008,47(38):10218-10226
To investigate the interaction of mammalian class I myosin, Myo1c, with its light chain calmodulin, we expressed (with calmodulin) truncation mutants consisting of the Myo1c motor domain followed by 0-4 presumed calmodulin-binding (IQ) domains (Myo1c (0IQ)-Myo1c (4IQ)). The amount of calmodulin associating with the Myo1c heavy chain increased with increasing number of IQ domains from Myo1c (0IQ) to Myo1c (3IQ). No calmodulin beyond that associated with Myo1c (3IQ) was found with Myo1c (4IQ) despite its availability, showing that Myo1c binds three molecules of calmodulin with no evidence of a fourth IQ domain. Unlike Myo1c (0IQ), the basal ATPase activity of Myo1c (1IQ) was >10-fold higher in Ca (2+) vs EGTA +/- exogenous calmodulin, showing that regulation is by Ca (2+) binding to calmodulin on the first IQ domain. The K m and V max of the actin-activated Mg (2+)-ATPase activity were largely independent of the number of IQ domains present and moderately affected by Ca (2+). In binding assays, some calmodulin pelleted with Myo1c heavy chain when actin was present, but a considerable fraction remained in the supernatant, suggesting that calmodulin is displaced most likely from the second IQ domain. The Myo1c heavy chain associated with actin in a nucleotide-dependent fashion. In ATP a smaller proportion of calmodulin pelleted with the heavy chain, suggesting that Myo1c undergoes nucleotide-dependent conformational changes that affect the affinity of calmodulin for the heavy chain. The studies support a model in which Myo1c in the inner ear is regulated by both Ca (2+) and nucleotide, which exert their effects on motor activity through the light-chain-binding region.  相似文献   

12.
13.
Censarek P  Beyermann M  Koch KW 《Biochemistry》2002,41(27):8598-8604
An increasing number of proteins are found that are regulated by the Ca(2+)-free state of calmodulin, apocalmodulin. Many of these targets harbor a so-called IQ motif within their primary sequence, but several target proteins of apocalmodulin lack this motif. We investigated whether the Ca(2+)-dependent calmodulin-binding site of nitric oxide synthase I could be transformed into a target site of apocalmodulin. Synthetic peptides representing the wild-type amino acid sequence and several peptides carrying mutations were studied by isothermal titration calorimetry and fluorescence spectroscopy. A single amino acid substitution of a negative charge to a positive charge can convert a classical Ca(2+)-dependent binding site of calmodulin into a target site for apocalmodulin. In addition, the introduction of hydrophobic amino acids increases the apparent binding affinity from the micromolar to the nanomolar range. Binding of wild-type and mutant peptides to Ca(2+)-calmodulin was enthalpically driven, and binding to apocalmodulin was entropically driven. Our data indicate that only a few selected amino acid positions in a calmodulin-binding site determine its Ca(2+) dependency.  相似文献   

14.
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.  相似文献   

15.
Ca2+-dependent inactivation (CDI) and facilitation (CDF) of the Ca(v)1.2 Ca2+ channel require calmodulin binding to a putative IQ motif in the carboxy-terminal tail of the pore-forming subunit. We present the 1.45 A crystal structure of Ca2+-calmodulin bound to a 21 residue peptide corresponding to the IQ domain of Ca(v)1.2. This structure shows that parallel binding of calmodulin to the IQ domain is governed by hydrophobic interactions. Mutations of residues I1672 and Q1673 in the peptide to alanines, which abolish CDI but not CDF in the channel, do not greatly alter the structure. Both lobes of Ca2+-saturated CaM bind to the IQ peptide but isoleucine 1672, thought to form an intramolecular interaction that drives CDI, is buried. These findings suggest that this structure could represent the conformation that calmodulin assumes in CDF.  相似文献   

16.
The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca(2+) binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca(2+) binding to sites III and IV, and we present a model showing that this could increase Ca(2+) binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39-62), and an adjacent acidic cluster of amino acids (amino acids 28-40). A synthetic peptide spanning residues 28-62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca(2+) association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca(2+) binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca(2+) binding to the C-domain of CaM.  相似文献   

17.
We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I''s. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F- actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.  相似文献   

18.
Primary cilia are hypothesized to act as a mechanical sensor to detect renal tubular fluid flow. Anomalous structure of primary cilia and/or impairment of increases in intracellular Ca2+ concentration in response to fluid flow are thought to result in renal cyst formation in conditional kif3a knockout, Tg737 and pkd1/pkd2 mutant mice. The mutant inv/inv mouse develops multiple renal cysts like kif3a, Tg737 and pkd1/pkd2 mutants. Inv proteins have been shown to be localized in the renal primary cilia, but response of inv/inv cilia to fluid stress has not been examined. In the present study, we examined the mechanical response of primary cilia to physiological fluid flow using a video microscope, as well as intracellular Ca2+ increases in renal epithelial cells from normal and inv/inv mice in response to flow stress. Percentages of ciliated cells and the length of primary cilia were not significantly different between primary renal cell cultures from normal and inv/inv mutant mice. Localization of inv protein was restricted to the base of primary cilia even under flow stress. Inv/inv mutant cells had similar bending mechanics of primary cilia in response to physiological fluid flow compared to normal cells. Furthermore, no difference was found in intracellular Ca2+ increases in response to physiological fluid flow between normal and inv/inv mutant cells. Our present study suggests that the function of the inv protein is distinct from polaris (the Tg737 gene product), polycystins (pkd1 and pkd2 gene products).  相似文献   

19.
We have cloned a cDNA encoding a catalytic subunit of calcineurin (CnA) expressed in Xenopus oocytes. The deduced amino acid sequence indicates 96.3% and 96.8% identities with the mouse and human CnAalpha isoforms, respectively. Xenopus CnA (XCnA) RNA and protein are expressed as maternal and throughout development. Recombinant XCnA protein interacted with calmodulin in the presence of Ca(2+). Deletion of calmodulin binding domain and auto-inhibitory domain revealed calcium independent phosphatase activity, thereby showing that XCnA is likely to be modulated by both calmodulin and calcium.  相似文献   

20.
A site-directed mutagenesis study of yeast calmodulin   总被引:2,自引:0,他引:2  
A site-directed mutagenesis study was carried out in order to understand the regulatory mechanism of calmodulin. We started from the yeast (Saccharomyces cerevisiae) calmodulin gene since it has many differences in amino acid sequence and inferior functional properties compared with the vertebrate calmodulin. Recombinant yeast calmodulins were generated in Escherichia coli transformed by constructed expression plasmids. Three recombinant calmodulins were obtained. The first two were YCM61G, in which the Ca2(+)-binding site 2 (the four Ca2(+)-binding EF-hand structures in calmodulin were numbered from the N-terminus) was converted to the same as that in vertebrate calmodulin, and YCM delta 132-148, in which the C-terminal half sequence of site 4 was deleted. These two recombinant calmodulins had the same maximum Ca2+ binding (3 mol/mol) as yeast calmodulin, which indicates that site 4 of yeast calmodulin was the one losing Ca2+ binding capacity. YCM delta 132-148 could not activate target enzymes, whereas its Ca2+ binding profile was similar to those of yeast calmodulin and YCM61G. Therefore, the structure in site 4 which cannot bind Ca2+ is indispensable for the regulatory function of yeast calmodulin. The complete regulatory function of vertebrate calmodulin can be attained by the combination of 4 Ca2+ binding structures. The negative charge cluster in the central alpha-helix region is suggested to stabilize the active conformation of calmodulin, since the third yeast calmodulin mutant, YCM83E, which had the negative charge cluster, increased the maximum activation of myosin light chain kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号