首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functionally active fragments MS2 R(-53 leads to 6) and MS2 R(-53 leads to 3) comprising the regulatory region for the replicase cistron have been isolated from MS2 RNA-coat protein complex following T1 RNase digestion. In order to obtain shorter fragments, active in coat protein binding and initiation of translation, MS2 R(-53 leads to 6) was cleaved with S1 nuclease. The results indicate that S1 nuclease attacks the most susceptible loop regions of the two hairpin helices of MSZ R(-53) leads to 6). Among the three fragments which have been isolated, only MS2 R(-35/33 leads to 6) containing the intact hairpin (b) region with initiation codon AUG is active in the coat protein binding. Functional activity exerted by another polynucleotide MS R(-17 leads to 6) supports the assumption that specific binding with the coat protein is determined by the hairpin (b) region prior to the replicase cistron.  相似文献   

2.
M Kozak  A J Shatkin 《Cell》1978,13(1):201-212
Four types of experiments were carried out with reovirus messenger RNAs or with 5′ terminal fragments of known sequence to identify features in mRNA which appear to be important for formation of initiation complexes with ribosomes. With a number of reovirus mRNAs, 40S initiation complexes had been previously shown to protect a significantly larger segment of the RNA (including the 5′ terminal m7G) than that protected by 80S initiation complexes. Each 80S-protected sequence had an AUG codon and was a subset of the 40S-protected sequence from the same message. When 40S- and 80S-protected fragments were tested for ability to rebind to ribosomes, the 80S-protected fragments showed considerably lower binding ability, implying that the “extra” sequences protected by 40S initiation complexes contribute to ribosome attachment. Nevertheless, wheat germ ribosomes select the same 5′ terminal initiation site in each reovirus mRNA, irrespective of the presence or absence of m7G on the message. This was demonstrated by comparing fingerprints of the ribosome-protected regions obtained with methylated versus unmethylated RNA. The contribution of m7G to formation of initiation complexes is therefore quantitative rather than qualitative. Limited T1 RNAase digestion of isolated 5′ terminal fragments from several reovirus messages generated a series of smaller fragments which were analyzed for ability to rebind to ribosomes. Partial digestion products up to 30 nucleotides in length which retained the 5′ cap but not the AUG codon were unable to associate stably with ribosomes, whereas every AUG-containing fragment that was analyzed was able to form initiation complexes. The efficiency of binding of certain AUG-containing fragments, however, was reduced by removal of either the 5′ terminal region, including the cap, or of sequences comprising the beginning of the coding region, on the 3′ side of the AUG. Complex formation between messenger RNA and ribosomes was inhibited by the trinucleotide AUG, but not by various other oligonucleotides. Although the inhibition was specific, a vast excess of trinucleotide was required for moderate inhibition of 80S complex formation, and the same concentration of AUG failed to inhibit formation of 40S initiation complexes.  相似文献   

3.
The present work deals with the structural-functional organization of regulatory regions of messenger RNAs. Some principles of the action of a translational repressor (coat protein) and the formation of the ribosomal initiation complex at the replicase cistron have been studied with MS2 phage RNA. When the complex of MS2 RNA with the coat protein is treated with T1 ribonuclease, the coat protein selectively protects mainly two fragments (59 and 103 nucleotides in length) from digestion; these fragments contain the intercistronic regulatory region and the beginning of the MS2 replicase cistron. These polynucleotides have been isolated in a pure state and their primary structure has been established.It has been established that both MS2 RNA fragments contain all the necessary information for specific interaction with MS2 coat protein and form a complex with it with an efficiency close to that observed in the case of native MS2 RNA. They also provide the normal polypeptide chain initiation at the replicase cistron. Enzymatic binding of the second aminoacyl-tRNA and electrophoretic analysis of N-terminal dipeptides prove that only the true initiator codon of the replicase cistron is recognized by a ribosome despite the presence of a few additional AUG triplets within the polynucleotides. Under conditions of limited hydrolysis by T1 ribonuclease, the beginning of the replicase cistron has been removed from the shortest polynucleotide leading to a complete loss of its ability to bind both the coat protein and a ribosome.Some principles of the functioning of the regulatory region in MS2 RNA as well as the nature of the initiator signal of protein biosynthesis are discussed.  相似文献   

4.
Interaction of bovine mitochondrial ribosomes with messenger RNA   总被引:3,自引:0,他引:3  
The gene for subunit II of cytochrome oxidase (CoII) from bovine mitochondria has been cloned behind a T7 promoter and the corresponding mRNA synthesized in vitro. The RNA transcribed from this vector has a single nucleotide 5' to the start AUG and, thus, corresponds closely to the native mRNA. It binds to the small 28 S ribosomal subunit of bovine mitochondria but not to the large (39 S) subunit or to 55 S ribosomes. The binding occurs readily in the absence of auxiliary initiation factors or initiator tRNA. The complex formed appears to contain 1 mRNA/28 S subunit. The observed binding is specific for mRNA since neither tRNA nor ribosomal RNA can act as competitive inhibitors. The interaction of the mRNA with the 28 S subunit does not require an AUG codon near the 5' end and constructs containing 5' leaders of more than 100 nucleotides still bind efficiently. About 5% of the bound mRNA is protected from digestion by T1 RNase. The protected fragments do not arise from a specific region of the mRNA since they hybridize to several restriction fragments of the cloned CoII gene.  相似文献   

5.
RNA 4 of alfalfa mosaic virus (AMV) is a monocistronic messenger for the coat protein. We have determined the sequence of the 40 +/- 2 nucleotides in RNA 4 that were protected in the initiation complex formed with wheat germ 80 S ribosomes from digestion by T1 or pancreatic ribonucleases. The AUG coat protein initiation codon was near the middle of this protected region. We have found two ribosome-binding sites in RNA 3. The principal one, near the 5' end, is the initiation site for the major translation product, a 35,000 dalton protein. The second site binds ribosomes only weakly, at the beginning of the "silent" coat protein cistron, and is similar but not identical to the initiation site protection site is discussed.  相似文献   

6.
A scanning mechanism has been proposed (Kozak, 1978) to explain how eukaryotic ribosomes select the correct AUG codon for initiation of protein synthesis. The hypothesis is that a 40 S ribosomal subunit binds initially at or near the 5′-terminus of a message and subsequently migrates toward the interior of the messenger RNA, stopping when it encounters the first AUG codon, at which point a 60 S subunit joins and peptide bond formation begins. The scanning mechanism predicts that if a message were modified by introduction of a new AUG triplet upstream of the existing initiator codon, the adventitious AUG should be the preferred site for formation of an 80 S initiation complex. This prediction has been confirmed in the present studies with two reovirus messenger RNAs, in which sodium bisulfite was used to convert an ACG sequence (located in the 5′ untranslated region of each message) to AUG. Analysis of the ribosome-protected mRNA fragments recovered from sparsomycin-blocked 80 S initiation complexes revealed that a high percentage of wheat germ ribosomes were centered around the “unnatural” 5′-proximal AUG created by the bisulfite treatment, although some ribosomes were also positioned at the second (normal) initiator codon. The bisulfite modification was carried out in 7 m-urea at 37 °C. resulting in quantitative conversion of cytosine to uracil. Thus, both the primary and secondary structure of the message were drastically altered. These perturbations did not impair the efficiency of ribosome binding, nor did the highly unfolded state of the mRNA permit ribosomes to attach to spurious sites in the interior of the message. The data support a mechanism in which the initiator codon is selected by virtue of its position in a message (i.e. closest to the 5′-terminus), without regard to either the primary or secondary structure of the flanking regions.  相似文献   

7.
The fragments of 125I-labelled rabbit globin messenger RNA protected from pancreatic RNAase by initiating 40 S subunits and 80 S ribosomes were analysed using the techniques of RNA sequencing. The fragments were cleaved specifically at cytidine residues generating oligonucleotides labelled in their 3′ terminal residue. Analysis of the partial digestion products of these oligonucleotides after treatment with pancreatic, T1, U2 and T2 RNAase enabled their sequences to be deduced. Sequences were determined from knowledge of the specificities of the ribonucleases and then confirmed in a separate analysis making use of the known electrophoretic mobilities of each base. This combination of methods served to establish that the 40 S- and 80 S-protected fragments are related, and that both contain the initiation codon of the mRNA. The 80 S-protected fragment is about 40 bases in length whilst the 40 S-protected fragments range from 50 to more than 60 bases in length. The most prominent of these 40 S-protected fragments is about 50 bases in length and extends more towards the 5′ end of the mRNA than does the 80 S-protected fragment. It follows that 80 S ribosomes do not protect the 5′ end of the mRNA from nuclease digestion and that the 5′ terminus of rabbit globin mRNA must be at least 15 to 30 bases from the initiation codon.  相似文献   

8.
Mapping the lacZ ribosome binding site by RNA footprinting   总被引:6,自引:0,他引:6  
G J Murakawa  D P Nierlich 《Biochemistry》1989,28(20):8067-8072
  相似文献   

9.
We determined the sites at which ribosomes form initiation complexes on Rous sarcoma virus RNA in order to determine how initiation of Pr76gag synthesis at the fourth AUG codon from the 5' end of Rous sarcoma virus strain SR-A RNA occurs. Ribosomes bind almost exclusively at the 5'-proximal AUG codon when chloride is present as the major anion added to the translational system. However, when chloride is replaced with acetate, ribosomes bind at the two 5'-proximal AUG codons, as well as at the initiation site for Pr76gag. We confirmed that the 5'-proximal AUG codon is part of a functional initiation site by identifying the seven-amino acid peptide encoded there. Our results suggest that (i) translation in vitro of Rous sarcoma virus virion RNA results in the synthesis of at least two polypeptides; (ii) the pattern of ribosome binding observed for Rous sarcoma virus RNA can be accounted for by the modified scanning hypothesis; and (iii) the interaction between 40S ribosomal subunits or 80S ribosomal complexes is stronger at the 5'-proximal AUG codon than at sites farther downstream, including the initiation site for the major viral proteins.  相似文献   

10.
Initiation complex formation between PP7 RNA and ribosomes of Pseudomonas aeruginosa and Escherichia coli has been investigated. The PP7 RNA fragments protected by both species of ribosome have been isolated, and their sequences have been determined. Only one binding sites is available on the intact PP7 RNA strand, and this site is recognized by ribosomes of both species. The PP7 RNA binding site is approximately 38 nucleotides long. It contains two AUG sequences and a purine-rich segment near the 5'-end that is complementary to segments near the 3'-ends of the 16S ribosomal RNA's of both P. aeruginosa and E. coli. In order to establish which of the AUG codons acts as the initiator, the H2N-terminal amino acid sequence of PP7 coat protein was determined. This sequence is compatible with the codon sequence following the second AUG codon. The extent of the reaction of PP7 RNA with E. coli ribosomes is greater than with P. aeruginosa ribosomes, but our results do not indicate a qualitative difference in the initial interaction between intact PP7 RNA and the ribosomes of either species.  相似文献   

11.
J F Atkins  J A Steitz  C W Anderson  P Model 《Cell》1979,18(2):247-256
The main binding site for mammalian ribosomes on the single-stranded RNA of bacteriophage MS2 is located nine tenths of the way through the coat protein gene. Translation initiated at an AUG triplet in the +1 frame yields a 75 amino acid polypeptide which terminates within the synthetase gene at a UAA codon, also in the +1 frame. Partial amino acid sequence analysis of the product synthesized in relatively large amounts by mammalian ribosomes confirms this assignment of the overlapping cistron. The same protein is made in an E. coli cell-free system, but only in very small amounts. Analysis of the translation products directed by RNA from op3, a UGA nonsense mutant of phage f2, identifies the overlapping cistron as a lysis gene. In this paper we show that the op3 mutation is a C yield U transition occurring in the second codon of the synthetase cistron, which explains the lowered production of phage replicase (as well as lack of lysis) upon op3 infection of nonpermissive cells. We discuss the properties of the overlapping gene in relation to its lysis function, recognition of the lysis initiator region by E. coli versus eucaryotic ribosomes and op3 as a ribosome binding site mutant for the f2 synthetase cistron.  相似文献   

12.
The mRNA encoding repressor cI of phage lambda is the only known E. coli message which starts directly with the initiation AUG codon. The ability of in vitro synthesized cI mRNA fragments (150 or 400 nts) to form ternary initiation complexes has been studied using the toeprint method. In the presence of tRNA(Met)f, these fragments are capable of forming the ternary complexes at the 5'-terminal AUG codon not only with 30S subunits but also with undissociated 70S ribosomes (70S tight couples). In the latter case, no binding at other positions of cI mRNA can be detected at all. The starting region of cI mRNA has a single stranded conformation and is highly enriched in A-residues. This feature of cI mRNA RBS is suggested to be the main factor which allows cI mRNA to form the initiation complex with the ribosome. Unlike 30S subunits, the binding to 70S tight couples is not affected by any of the initiation factors, although it is as efficient as that to 30S subunits supplemented with the factors. 30S subunits prefer to associate with the internal RBSs of the preformed mRNA molecules, provided that they are not sequestered by the secondary structure. In contrast, 70S tight couples tend to avoid extra sequences upstream of the codon directed to the P site and occupy a position as close as possible to the 5'-end of the message. This has been found to be the case both for tRNA(Met)f and for elongator tRNA(Glu)2. The structural features of mRNA RBSs which influence their different binding for 30S subunits and 70S ribosomes are discussed.  相似文献   

13.
In a previous study, we demonstrated that the ability of a cDNA fragment to hybrid-arrest the translation of its complementary mRNA in rabbit reticulocyte lysate depends on the position of the mRNA/cDNA duplex within the mRNA molecule. In the present report, we further characterize the mechanisms involved in the destabilization and subsequent translation of mRNA/cDNA hybrids by mapping in detail the positional dependence of hybrid-arrested translation of the human alpha- and beta-globin mRNAs and by directly assessing the stability of mRNA/cDNA duplexes in reticulocyte lysate under a variety of translational conditions. The mapping studies in this report demonstrate that the translation of a hybridized mRNA requires exposure of the 5' nontranslated region and the AUG initiation codon, as well as those bases 3' to the AUG which are typically protected by an initiating 80 S ribosome. The translation of these mRNA/cDNA hybrids is associated with the complete removal of cDNA from the mRNA coding region; this disruption of the mRNA/cDNA duplex is blocked by inhibitors of translational initiation and elongation. cDNAs which extend into the 3' nontranslated region remain associated with the mRNA during normal translation but are completely removed from the mRNA during translation if translational termination is suppressed. Taken together, these findings demonstrate that the disruption of mRNA/cDNA duplexes in rabbit reticulocyte lysate is tightly linked to the assembly and migration of 80 S ribosomes.  相似文献   

14.
Eukaryotic translation initiation begins with assembly of a 48S ribosomal complex at the 5' cap structure or at an internal ribosomal entry segment (IRES). In both cases, ribosomal positioning at the AUG codon requires a 5' untranslated region upstream from the initiation site. Here, we report that translation of the genomic RNA of human immunodeficiency virus type 2 takes place by attachment of the 48S ribosomal preinitiation complex to the coding region, with no need for an upstream 5' untranslated RNA sequence. This unusual mechanism is mediated by an RNA sequence that has features of an IRES with the unique ability to recruit ribosomes upstream from its core domain. A combination of translation assays and structural studies reveal that sequences located 50 nucleotides downstream of the AUG codon are crucial for IRES activity.  相似文献   

15.
A new method for identifying ribosome-binding sites was developed to determine whether AUG codons in the 5'-terminal RNA sequence of Rous sarcoma virus were used to initiate protein synthesis. We found that when translation is inhibited, the major ribosome-binding site on Rous sarcoma virus RNA is at the 5'-proximal AUG codon, even though the primary translational product from this RNA, Pr76gag, is encoded behind the fourth AUG codon 331 bases downstream from the observed initiation site. These results suggest that ribosomes can initiate translation on Rous sarcoma virus RNA at more than one site, thereby producing a seven-amino-acid peptide, as well as the gag gene polyprotein precursor of Mr 76,000.  相似文献   

16.
17.
Mechanism of mRNA binding to bovine mitochondrial ribosomes   总被引:3,自引:0,他引:3  
The binding of mRNA to bovine mitochondrial ribosomes was investigated using triplet codons, homopolymers and heteropolymers of various lengths, and human mitochondrial mRNAs. In the absence of initiation factors and initiator tRNA, mitochondrial ribosomes do not bind triplet codons (AUG and UUU) or homopolymers (oligo(U] shorter than about 10 nucleotides. The RNA binding domain on the 28 S mitoribosomal subunit spans approximately 80 nucleotides of the mRNA, judging from the size of the fragments of poly(U,G) and natural mRNAs protected from RNase T1 digestion by this subunit, but the major binding interaction with the ribosome appears to occur over a 30-nucleotide stretch. Human mitochondrial mRNAs coding for subunits II and III of cytochrome c oxidase and subunit 1 of the NADH-ubiquinone oxidoreductase (complex I) were used in studying in detail the binding of mRNA to the small subunit of bovine mitochondrial ribosomes. We have determined that these mRNAs have considerable secondary structure in their 5'-terminal regions and that the initiation codon of each mRNA is sequestered in a stem structure. Little mRNA was bound to ribosomes in a manner conferring protection of the 5' termini from RNase T1 digestion, under standard conditions supporting the binding of artificial templates, but such binding was greatly stimulated by the addition of a mitochondrial extract. Initiation factors and tRNAs from Escherichia coli were unable to stimulate the 5' terminus protected binding of these mRNA molecules, demonstrating a requirement for homologous factors. Our results strongly suggest that mitochondrial initiation factors are required for the proper recognition and melting of the secondary structure in the 5'-terminal region of mitochondrial mRNAs, as a prerequisite for initiation of protein synthesis in mammalian mitochondria.  相似文献   

18.
Comparison of nucleotide sequences surrounding the initiation sites of a number of mRNAs reveals few common features. These may be the presence of in- or out-of-phase nonsense codons and (or) polypurine bases complementary to the 16S RNA of the 30S subunit of ribosomes. Since the bases which precede or follow an initiation site vary in length and composition we have examined whether they play a role as spacers between cistrons or whether they have an active function in the termination and initiation of translation. In vitro we have observed that some sequences 5' terminal to AUG are preferred over others in forming an initiation complex. The same bases have much less effect when present at the 3' terminal end of an AUG codon. When the 5' terminal codon is the termination codon UAA, absolutely no initiation complex can be detected. This suggests that spacing may be needed between a stop and a start codon. Conversely, the hexamer AUGUAA failed to elicit chain termination. This was so in systems that terminated when free UAA was added or when a sense triplet was present between the initiation and termination triplets. These results suggest that ribosomes may recognize the stop triplet. Hence ribosomes may not obey simple A and P site models in the termination reaction.  相似文献   

19.
20.
Translation initiation on poliovirus and encephalomyocarditis virus (EMCV) mRNAs occurs by a cap-independent mechanism utilizing an internal ribosomal entry site (IRES). However, no unifying mechanism for AUG initiation site selection has been proposed. Analysis of initiation of mRNAs translated in vitro has suggested that initiation of poliovirus mRNA translation likely involves both internal binding of ribosomes and scanning to the first AUG which is in a favorable context for initiation. In contrast, internal initiation on EMCV mRNA may not utilize scanning, since ribosomes bind directly or very close to the initiation codon AUG-11. We have studied in vivo the sequence requirements for internal initiation around the EMCV initiation codon, both in monocistronic and in dicistronic mRNAs. Our studies show that the upstream AUG-10 is normally not used and that there is no specific sequence requirement for nucleotides between AUG-10 and AUG-11. However, the sequence context of AUG-11 does influence the efficiency of initiation at AUG-11. Efficient IRES-mediated internal initiation at AUG-11 exhibits a requirement for an adenine in the -3 position, similar to cap-dependent initiation. These results support a model for internal initiation on EMCV mRNA in which scanning starts at or near AUG-11. Although initiation primarily occurs at AUG-11, initiation at multiple downstream AUG codons can be detected. In addition, a poor sequence context around AUG-11 results in increased initiation at one or more downstream AUG codons, indicative of leaky scanning or jumping by the ribosome from AUG-11 mediated by the EMCV IRES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号