首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The testosterone responses to a single injection of hCG (100 i.u.) in hypophysectomized (hypox.), cryptorchid or sham-operated rats were followed over a 5-day period. In sham-operated rats, hCG induced a biphasic rise in serum testosterone, peaks being observed at 2 and 72 h. Reduced testis weights, elevated FSH and LH levels and reduced serum testosterone levels were found after 4 weeks of cryptorchidism, but hCG stimulation resulted in a normal 2 h peak in serum testosterone. However, the secondary rise at 72 h in cryptorchid rats was significantly lower than sham-operated rats. Reduced testis weight and undetectable serum FSH and LH levels together with decreased testosterone levels were found 4 weeks after hypophysectomy. Serum testosterone levels rose 2 h after hCG in comparison to hypox. controls but this peak was significantly reduced compared with sham-operated rats. The second rise in serum testosterone began on day 2, peaking on day 4 at levels comparable to that seen in sham-operated rats after hCG. The in vitro basal and hCG stimulated secretion of testosterone by cryptorchid testes was greater than that secreted by normal rat testes (518.0 +/- 45.9 and 3337.6 +/- 304.1 pmol per testis per 4 h compared with 223.6 +/- 24.9 and 1312.9 +/- 141.4 pmol per testis per 4 h for normal rat testes). In cryptorchid animals a single injection of 100 i.u. hCG resulted in a pattern of in vitro refractoriness similar to normal rats, lasting from 12 h to 2 days, during which testosterone secretion was reduced to near basal levels. The in vitro basal and hCG-stimulated secretion of testosterone by hypox. rat testes was severely diminished compared with normal rat testes. The temporal pattern of in vitro secretion of testosterone from hypox. rat testes mimicked the in vivo serum testosterone pattern seen in these animals. This study demonstrates important differences in the in vivo and in vitro testosterone response to hCG after testicular damage.  相似文献   

2.
The specific testicular uptake in vivo of 125I-labelled hCG was compared in control adult rats and adult rats made bilaterally cryptorchid 5 weeks previously. Although a similar temporal pattern of uptake was observed in both groups, uptake of hCG by cryptorchid testes was reduced at all times after injection by up to 70%. The possible causes of this impairment were investigated. It could not be accounted for by differences in the rate of absorption or clearance of 125I-labelled hCG in the two groups. Therefore, because hCG-induced increase in the permeability of testicular capillaries is a crucial factor in determining hCG uptake by the testis, this change was compared in control and cryptorchid testes. Although hCG induced a characteristic increase in testicular capillary wall permeability in both groups, this change was temporally delayed in cryptorchid testes, and occurred after hCG values in the blood had fallen. Even when hCG had crossed the capillary wall into testicular interstitial fluid, its uptake into the testicular tissue was significantly lower in cryptorchid than in control testes. These changes probably account for the impairment of gonadotrophin uptake by the cryptorchid testis and have important implications with respect to the aetiology of Leydig cell changes in cryptorchidism.  相似文献   

3.
Adult rats were made bilaterally cryptorchid and studied at intervals of 3, 7, 14 or 21 days to study temporal changes in Leydig cell function. Serum FSH and LH levels were measured and the cross-sectional area of the Leydig cells assessed by morphometry. The function of the Leydig cells was judged by the binding of 125I-labelled hCG to testicular tissue in vitro and the testosterone response of the testis to hCG stimulation in vitro. By 3 days after cryptorchidism, the binding of labelled hCG to testicular tissue was significantly decreased compared to that of controls, but the testes were able to respond to hCG stimulation in vitro. At 7, 14 and 21 days after cryptorchidism, an enhanced testosterone response was observed and the size of the Leydig cells was significantly greater than that of the controls, which indicated increased secretory activity by the cryptorchid testis. Although serum FSH levels were significantly elevated after 3 days of cryptorchidism, serum LH levels did not rise until 7 days, thereby suggesting that the loss of receptors is unlikely to result from down-regulation by LH. The reduced testosterone response of the cryptorchid testis in vivo to low doses of hCG and the enhanced response at high doses are probably related to the reduced blood flow to the cryptorchid testis and the decreased sensitivity of the Leydig cells induced by LH/hCG receptor loss.  相似文献   

4.
Response of the cryptorchid testis to gonadotrophic stimulation was assessed by comparison of the androgen production capability in vivo and in vitro with that of the normal scrotal testis. Serum androgen concentrations in cryptorchid rats were similar to those in normal rats, and the incremental increase 60 min after 50 i.u. hCG (i.v.) was about 7-fold for both groups. Basal and hCG-stimulated androgen production in vitro was higher for abdominal testes (557 and 3286 ng/pair) than for scrotal tests (157 and 504 ng/pair). Specific binding of hCG by testicular homogenates was slightly higher (P < 0.05) for cryptorchid testes when expressed per unit weight, but Scatchard analysis indicated that although hCG binding affinities did not differ (Ka = 2 x 10(10) M-1), hCG binding capacity of cryptorchid testes was only 75 ng, compared to 219 ng for scrotal testes. These data indicate that a discrepancy exists between androgen production in vivo and in vitro by cryptorchid testes and that normal serum androgen concentrations are maintained in the presence of decreased numbers of testicular LH/hCG receptors.  相似文献   

5.
The effect of uni- and bilateral cryptorchidism on testicular inhibin and testosterone secretion and their relationships to gonadotropins were studied in rats. Mature Wistar male rats weighing approximately 300 g were made either uni- or bilaterally cryptorchid. Testicular inhibin and testosterone content and plasma levels of LH and FSH were examined 2 weeks later. A similar remarkable decrease in testicular inhibin content was found in uni- and bilaterally cryptorchid testes. On the other hand, the testicular testosterone content was significantly decreased only in unilaterally cryptorchid testis with an inverse increase in the contralateral testis. Plasma testosterone levels were normal and plasma LH and FSH increased significantly in both of the cryptorchid groups. These results showed that cryptorchidism impairs both Sertoli and Leydig cell functions. While testosterone production was compensated by increased LH for 2 weeks, neither inhibin secretion nor storage changed in cryptorchid or contralateral testes during the same period.  相似文献   

6.
The effects of testosterone administration on testicular inhibin content and histology were studied in bilaterally cryptorchid rats, in which a marked decrease in testicular inhibin content had been observed. Mature male Wistar rats weighing approximately 300 g were made bilaterally cryptorchid by placing the testes in the abdominal cavity. Testosterone in oil, 0.1, 1.0 or 10 mg, was given i.m. each week. Testicular inhibin and testosterone content, histology and plasma LH, FSH and testosterone were studied 2 weeks later. Abnormally decreased testicular inhibin in cryptorchidism was restored toward normal by testosterone in a dose dependent manner in 2 weeks after surgery. Sertoli cell structure also recovered toward normal with increasing amount of testosterone. Decreased testicular testosterone content and Leydig cell atrophy were observed with suppressed plasma LH and FSH after testosterone. These results showed that the increased plasma concentration of testosterone had a stimulatory effect on the Sertoli cell function in cryptorchidism, in which compensated Leydig cell failure was demonstrated.  相似文献   

7.
A single s.c. injection of hCG (100 i.u.) produced a biphasic serum testosterone response in adult male rats, peaks being noted at 2 h (24 ng/ml) and 3 days (16 ng/ml). The levels fell to control during the intervening interval (8 ng/ml), although there were elevated levels of serum hCG. Maintenance of high oestradiol levels by a s.c. injection of 50 micrograms oestradiol benzoate given on Day 2 after the initial hCG injection failed to prolong the refractory period and the secondary peak of testosterone (16 ng/ml) occurred on Day 3. Administration of the antioestrogen, tamoxifen (2 mg or 3 micrograms), 24 h before or simultaneously with hCG did not prevent testicular refractoriness in vivo because serum testosterone levels still declined after 2 h to reach a nadir at 2 days. The basal in-vitro testosterone production by decapsulated testes from animals injected with hCG was enhanced at 2 h. Stimulation by hCG increased the amount of testosterone produced (X 1.5 that in controls). By 12 h basal production decreased and there was no further increment in testosterone in the presence of hCG. This refractoriness to further hCG stimulation prevailed until Day 3, but the total production of testosterone fell so that at 24 h and 2 days testes were producing basal amounts of testosterone. Testes recovered from refractoriness at 4 and 5 days, when basal and stimulated testosterone production were greater than in controls. Injection of 50 micrograms oestradiol benzoate at 2 days did not prolong the in-vitro refractory period and 2 mg or 3 micrograms tamoxifen had no effect on the in-vitro steroidogenic activity, since testes were still refractory to further hCG stimulation from 12 h to 3 days. The results of the present study do not support the hypothesis that oestradiol is involved in the hCG-induced refractoriness of the Leydig cell. The nadir between the peaks of serum testosterone in vivo corresponds to the period during which the testis is refractory to in-vitro stimulation by hCG.  相似文献   

8.
Reports from this and other laboratories have concluded that unilateral disruption of spermatogenesis induces a predominantly ipsilateral increase in the responsiveness of Leydig cells to stimulation with luteinizing hormone (LH) and have suggested that if such effects were mediated by locally produced hormones then such "factors" should be detectable in testicular interstitial fluid. We sought to demonstrate such factors in testicular fluid from gonads subjected to a variety of treatments that disrupt gametogenesis. Fluid (TF) was drained from testes of adult rats that had been sham treated, irradiated, or treated with busulfan in utero, made unilaterally or bilaterally cryptorchid, or were unilaterally or bilaterally efferent-duct-ligated. Leydig cells obtained from normal rats basally produced 8 +/- 1 ng androgen/10(6) Leydig cells/2 h and, when maximally stimulated with LH, produced 66 +/- 3 ng. The addition of the various TFs to the incubations significantly increased both basal and LH-stimulated androgen production. TF from lesioned testes was more effective in increasing androgen production than TF from control rats. Unilateral lesions caused an increase in the ability of TF from the disrupted testes to increase the androgen production by normal Leydig cells, as compared to TF from contralateral testes. Thus, locally produced "factor(s)" do appear to modify Leydig cell function. Additional studies using TF from control and bilaterally cryptorchid animals suggest that the "factor' in TF is heat-labile; has a molecular size between bovine serum albumin and ovalbumin; exerts a portion of its action independently of cAMP formation; and does not appear to be LH, follicle-stimulating hormone, prolactin, or gonadotropin-releasing hormone.  相似文献   

9.
These studies determined the local acute responsiveness of the testis to intratesticular administration of human chorionic gonadotropin (hCG) under basal, stimulated (systemic hCG pre-treated), hypogonadotropic (steroid pre-treatment) and hyperprolactinemic conditions in male mice. In addition, testicular testosterone (T) levels were determined after intratesticular administration of the aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA) or progesterone under basal or hCG-stimulated conditions. Intratesticular administration of 0.025, 0.25, 2.5 or 25 mIU hCG resulted in a dose-dependent (3- to 14-fold) increase in testicular T concentrations in hCG compared to vehicle-injected testes. Systemic (i.p.) pre-treatment with 5 IU hCG 24 h before prevented any further increases in the already elevated (10-fold basal) T levels after direct intratesticular hCG injection. Pretreatment with 250 micrograms testosterone propionate (TP) reduced basal testicular T concentrations, but resulted in increased responsiveness to intratesticular hCG administration. In contrast, estradiol benzoate (EB) pretreatment, which also reduced basal testicular T concentrations, did not affect the testicular responsiveness to hCG. Hyperprolactinemia reduced testicular responsiveness to intratesticular administration of 0.025, 0.25 or 2.5 mIU hCG, but basal levels of testicular T were elevated. One hour after intratesticular injections of an aromatase inhibitor, 4-OHA; (0.25 micrograms) testis, T levels were increased in males pre-treated with 5 IU hCG (i.p.) 24 h earlier. Higher doses of 4-OHA (2.5, 25 or 250 micrograms) resulted in significant, dose-related increases in basal testicular T levels which were attenuated by hCG-pre-treatment. Intratesticular administration of 20 micrograms progesterone increased testicular T concentrations 2.7-fold, but this effect was attenuated (1.5-fold) in hCG-pre-treated mice, suggesting that enzymatic lesions beyond progesterone may be involved in hCG-induced testicular desensitization. These results indicate that testicular responsiveness to hCG depends on the existing levels of gonadotropic stimulation. However, it is evident that estrogens and prolactin also influence the sensitivity of the testis to gonadotropin.  相似文献   

10.
Heat is known to depress spermatogenesis in the boar, but there is little quantitative evidence on its effects on testicular steroidogenesis in this species. The studies reported here examine the effects of short-term and chronic testicular hyperthermia on levels of testosterone (T) and corticosteroids (C) in plasma of Large-White (LW) boars.In examining effects of acute heating, three mature LW boars were maintained at 23°, 35° and 23°C ambient during three consecutive 24-h periods. Blood samples were collected hourly and levels of T and C in plasma determined. Prior to heating, plasma T levels varied diurnally (P<0.05) about a 24-h mean value of 2.78 nM. During heating at 35°C, and recovery at 23°C, mean plasma T levels remained unchanged (P>0.05) but there was a loss of diurnal rhythm. Mean 24-h plasma C levels did not change during heating (20.8 nMat 23°C, 20.2 nMat 35°; P>0.05), but fell (P<0.05) to 8.3 nM during the recovery period at 23°C.Effects of chronic heating on testis function were investigated by determining T and C concentrations in peripheral plasma of unilateral cryptorchid boars in which the scrotal testis was removed shortly after birth. Blood samples were drawn hourly, for 24 h, from each animal at about 10 months of age. The boars were then treated, i.v., with 700 IU hCG and blood samples collected frequently for 12 h. Mean plasma T levels before and after hCG treatment were 1.94 and 3.71 nM respectively, the difference between these levels being significant (P<0.05). At the same time, comparison was made with four normal littermates, hemicastrated at 3 days of age and heated to maintain testis temperature near 38°C. Mean plasma T levels in these boars increased (P<0.05) from 5.90 nM before, to 26.5 nM after hCG treatment, both levels being higher (P<0.05) than corresponding values for the hemicastrate cryptorchid animals. Levels of C in plasma increased (P<0.05) in the heated-scrotal boars following hCG treatment but decreased (P<0.05) in the cryptorchid animals. Histological comparison of testicular tissue from the scrotal and cryptorchid animals in this experiment revealed hypertrophy of Leydig cells in the abdominal testes.It is concluded that acute testicular hyperthermia (to c. 38°C) does not result in significant depression in mean plasma T levels of boars. However, chronic heating of testes at 38°C is associated with lower basal levels of T in peripheral plasma and an impaired response of plasma T concentrations following gonadotrophic stimulation.  相似文献   

11.
The in vivo effects of short photoperiod (SPP, 6L:18D) for 8 and 12 wk on plasma and testicular levels of testosterone (T) precursors in adult golden hamsters were evaluated. Plasma and testicular progesterone (P), 17 alpha-hydroxyprogesterone (17 alpha-OHP), androstenedione (A-dione), and T were measured after 5 injections of saline or human chorionic gonadotropin (hCG) (5 or 25 IU/day). The basal levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL) in circulation were also determined. There were significant reductions in the weight of the testes in animals exposed to SPP. After 12 wk in SPP, circulating levels and testicular content of 17 alpha-OHP, A-dione, and T were significantly reduced, suggesting that the decrease in T secretion may be associated with the impairment of synthesis and/or action of 17 alpha-steroid hydroxylase, C17-20 steroid lyase, and 17 beta-hydroxysteroid dehydrogenase enzymes in the testes. Exposure to SPP for 8 wk resulted in decreased plasma and testicular content of T. Although there were reductions in testicular content of 17 alpha-OHP and A-dione, this was not reflected in plasma levels of these steroids. After 8 and 12 wk of exposure to SPP, hCG treatment increased the total amounts of T precursors (except P at 8 wk) in the testes, but the values attained in animals exposed to 12 wk of SPP remained below those observed in hamsters kept in a long photoperiod (14L:10D), suggesting that gonadotropin replacement alone may be insufficient to normalize testicular steroidogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In contrast to the situation in adults, desensitization of androgen production, secondary to loss of enzyme activity, was not found in testes of neonatal rats exposed to human Chorionic Gonadotropin (hCG). In the present study attention was given to the acute effects of a single injection of hCG upon the activity of testicular 17 alpha-hydroxylase, C17,20-lyase and the concentration of testosterone in the serum of 5, 10 or 28-30 day old rats was investigated. Tritiated H2O from 17 alpha-[3H]progesterone and 14CH3COOH from 21-[14C]progesterone were the products measured to evaluate hydroxylase and lyase activities respectively. Large increases in hCG in the serum were detected within 2 h of a subcutaneous injection. Testosterone, which was highest in 5 day animals, increased quickly in all animals given hCG. In 28-30-day old animals, the concentration of this steroid began to fall 24 h after injection of hCG. 17 alpha-Hydroxylase activity decreased in the testes of all animals given hCG, but only after a brief increase. Activity returned to the starting level, or above, within 24 h in 5 or 10-day old animals. In 28-30-day old rats the activity of both enzymes decreased dramatically to a nadir at 24 h, but increased thereafter. The results indicate that desensitization of testicular androgen synthesizing enzymes occurs in neonatal as well as older testes stimulated with hCG, but the desensitization was very brief in neonatal animals and no desensitization of lyase was found in 5-day old rat testes.  相似文献   

13.
The regulation of testicular LH/hCG receptors was studied in Syrian (golden) hamsters with testicular atrophy induced by exposure to short photoperiod (5L:19D) and in gonadally active hamsters kept in a long photoperiod (14L:10D). By 24 h after injection of hCG, long-photoperiod hamsters showed a dose-related decrease in the number of testicular LH/hCG receptors. At 48 and 72 h, there was a recovery from this 'down-regulation'. The recovery was much faster than has been reported for the rat and mouse, and it resulted in elevation of testicular LH/hCG receptor concentrations above basal values. Hamsters with short photoperiod-induced testicular atrophy showed an increase in testicular LH/hCG receptors after injection of hCG, except for animals injected with a very high dose. The hCG-induced increase in testicular LH/hCG binding in these animals was associated with reappearance of testosterone responses to subsequent hCG stimulation. Response of testicular LH/hCG receptors to hCG in prepubertal hamsters resembled that measured in animals with short photoperiod-induced gonadal atrophy.  相似文献   

14.
Cryptorchidism surgically induced in 14-day-old rats, was allowed to persist until 35 days when one group was killed to assess testicular function. In a second group the cryptorchid testis was returned to the scrotum surgically (orchidopexy) and subsequently killed at 130 days. A third group remained persistently cryptorchid to 130 days, while in a fourth group two sham operations were performed at 14 and 35 days. At 35 days, cryptorchidism resulted in a significant decline in testis weight due to suppressed spermatogenesis. Sertoli cell function as measured by seminiferous tubule fluid (TF) production after unilateral efferent duct ligation and androgen-binding protein (ABP) production was significantly depressed in the cryptorchid group. Serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were significantly elevated with cryptorchidism but serum testosterone levels were unchanged. Although morphometric measurements showed no change in Leydig cells cross-sectioned area, in vitro human chorionic gonadotropin (hCG)-stimulated testosterone production was significantly increased in the cryptorchid group at higher hCG doses. Similar changes were found in cryptorchid testes at 130 days except that Leydig cell cross-sectional area was now significantly increased. Orchidopexy at 35 days restored spermatogenesis and fertility during test mating was not impaired. TF production, ABP accumulation and serum FSH levels returned to normal following orchidopexy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A simple and reliable method was developed to determine the neutral cholesteryl ester hydrolase (CEH) activity in rat testes, using cholesteryl-[1-14C]-oleate as substrate. The activity was due to a soluble enzyme present in the cytoplasm of predominantly Sertoli cells, which could be shown after depleting the testes of Leydig cells with ethane dimethyl sulphonate. This treatment also revealed that the loss of CEH activity in abdominal testes of experimentally cryptorchid rats takes place in the Sertoli cells. In prepubertal rats made unilaterally cryptorchid at birth, the CEH activity was significantly higher in the abdominal than in the scrotal testes at 16 days of age. This is earlier than any previously described biochemical change and coincides with, or may even precede, the earliest morphological changes which are accumulation of lipid droplets in the Sertoli cells. The testicular CEH activity then decreased to 30 days of age in the abdominal testes, whereas the activity increased in the contralateral, scrotal testes. When adult rats were made unilaterally cryptorchid for 24 h, the CEH activity decreased rapidly in the abdominal testes. These results suggest that a derangement in cholesteryl ester metabolism is an early event in the pathogenesis of testicular degeneration in cryptorchidism.  相似文献   

16.
Rats were surgically made bilaterally cryptorchid and after 4-8 days the testes were returned to the scrotum. After 70 days fertility was tested by pairing with females. Fertility was restored in 5/6 rats with testes cryptorchid for 4 or 5 days, but only 2/9 were fertile when the duration of cryptorchidism was 6-8 days. The sterility was due to irreversible degeneration of the spermatogonial stem cells. The testes of infertile males were smaller and lighter than those of fertile males and the seminiferous tubule diameters were reduced.  相似文献   

17.
The present study was designed to investigate the effect of acute administration of gonadotropin on testicular steroid secretion in dog and rat. Animals received a subcutaneous injection of 25 IU/kg of hCG or 1.5 microgram/kg of [D-Trp6, des-Gly-NH2(10)]LHRH ethylamide (LHRH-A). Testosterone is the predominant steroid measured, in dog plasma, under basal conditions. After LHRH-A injection, testosterone levels are not significantly changed while dehydroepiandrosterone and androst-5-ene-3 beta,17 beta-diol (delta 5-steroids) levels are stimulated by almost 20-fold (P less than 0.01). When dogs were injected with hCG, we also observed a marked stimulation of dehydroepiandrosterone levels (20-fold; P less than 0.01) accompanied by a small increase of plasma testosterone concentration (2-fold, P less than 0.01). In rats injected with either hCG or the LHRH analogue, an increment of plasma testosterone (7-fold, P less than 0.01) is detected in the first hour while plasma dehydroepiandrosterone levels are slightly stimulated. Moreover, in rats injected with hCG, low plasma steroid levels are present between 4-12 h after injection due to testicular desensitization. This marked decrease is then followed by a second peak of steroid secretion 24 h later. Acute testicular steroidogenic responsiveness to hCG on the dog is, however, different: after stimulation, the levels of plasma dehydroepiandrosterone are maintained at a plateau and slowly decline after 24-48 h. Our data indicate that in dogs, stimulation of testicular steroidogenesis leads to an increase of plasma delta 5-steroid levels while the same stimuli cause, in the rat, a stimulation of delta 4-androgen, particularly testosterone.  相似文献   

18.
Tamoxifen was administered i.m. for 9 days to adult male rats in a daily dose of 100 micrograms or 1 mg. The treatment resulted in a significant reduction of the plasma levels of testosterone and LH, without modification of the plasma levels of FSH and of the testes weight. Upon incubation, the testes from the tamoxifen-treated rats produced less testosterone and 7 alpha-hydroxytestosterone, but metabolized [4-14C]testosterone in the same way as the control animals. Small doses of hCG (0.5 i.u. for 9 days) were unable to modify the tamoxifen effect on the testicular function, while tamoxifen significantly inhibited the increase of the plasma levels of testosterone induced by the administration of moderate doses of hCG (1.5 i.u. or 2.5 i.u. for 9 days) to hypophysectomized rats. Tamoxifen treatment, however, did not modify significantly the reactivity of the testes towards high doses of hCG (10 i.u.), administered either 2 h before sacrifice or for 9 days. It is concluded that a prolonged administration of tamoxifen in the rat has, besides an indirect effect resulting from a decrease of the LH levels, a direct inhibitory influence on the testicular testosterone formation, which can be reversed by high doses of hCG.  相似文献   

19.
The effects of a thyroidectomy and thyroxine (T4) replacement on the spontaneous and human chorionic gonadotropin (hCG)-stimulated secretion of testosterone and the production of adenosine 3',5'-cyclic monophosphate (cAMP) in rat testes were studied. Thyroidectomy decreased the basal levels of plasma luteinizing hormone (LH) and testosterone, which delayed the maximal response of testosterone to gonadotropin-releasing hormone (GnRH) and hCG in male rats. T4 replacement in thyroparathyroidectomized (Tx) rats restored the concentrations of plasma LH and testosterone to euthyroid levels. Thyroidectomy decreased the basal release of hypothalamic GnRH, pituitary LH, and testicular testosterone as well as the LH response to GnRH and testosterone response to hCG in vitro. T4 replacement in Tx rats restored the in vitro release of GnRH, GnRH-stimulated LH release as well as hCG-stimulated testosterone release. Administration of T4 in vitro restored the release of testosterone by rat testicular interstitial cells (TICs). The increase of testosterone release in response to forskolin and androstenedione was less in TICs from Tx rats than in that from sham Tx rats. Administration of nifedipine in vitro resulted in a decrease of testosterone release by TICs from sham Tx but not from Tx rats. The basal level of cAMP in TICs was decreased by thyroidectomy. The increased accumulation of cAMP in TICs following administration of forskolin was eliminated in Tx rats. T4 replacement in Tx restored the testosterone response to forskolin. But the testosterone response to androstenedione and the cAMP response to forskolin in TICs was not restored by T4 in Tx rats. These results suggest that the inhibitory effect of a thyroidectomy on the production of testosterone in rat TICs is in part due to: 1) the decreased basal secretion of pituitary LH and its response to GnRH; 2) the decreased response of TICs to gonadotropin; and 3) the diminished production of cAMP, influx of calcium, and activity of 17beta-HSD. T4 may enhance testosterone production by acting directly at the testicular interstitial cells of Tx rats.  相似文献   

20.
Cryptorchidism was associated with increased responsiveness of the isoproterenol-sensitive adenylate cyclase in membrane particles from rat testis. Abdominal testes from uni- and bilaterally cryptorchid rats showed the same activities. The change in isoproterenol-responsive adenylate cyclase was independent of the age at which the animals were made cryptorchid. The isoproterenol response was maximal 3-4 weeks after the rats were made cryptorchid. By 2-3 months after orchidopexy the isoproterenol response in the rat testis had decreased to normal control values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号