首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Our aim was to examine whether lipopolysaccharide of Escherichia coli, polyamines of dietetic and/or bacterial origin, and products of the bacterial metabolism influence cell proliferation in epithelial cells from the colon and small intestine. Lipopolysaccharide of Escherichia coli 0111:B4 was incubated with cultures from human colonic mucosa. The mitoses were arrested with Vincristine and the total number of metaphases per crypt was counted. In addition, lipopolysaccharide was incubated with a human colonic epithelial cell line from adenocarcinoma (LS-123 cells) and with a nontransformed small intestinal cell line from germ-free rats (IEC-6 cells) for 24 h. In the last 4 h, the cells were labeled with tritiated thymidine. The cells were incubated with putrescine, cadaverine, and spermidine at 10−11–10−3 M and with acetic acid (10−5–10−1 M), acetaldehyde (10−10–10−4 M) and ammonium chloride (1–20 mM). Lipopolysaccharide of Escherichia coli increased the number of arrested metaphases in human colonic crypts and DNA synthesis in L-123 and IEC-6 cells (P<0.001). All polyamines increased DNA synthesis in the colonic and small intestinal cell lines, the effects being more marked for putrescine (P<0.001). The higher concentrations of acetic acid increased DNA synthesis in both epithelial cell lines (P<0.001). Acetaldehyde slightly decreased DNA synthesis in LS-123 cells at cytotoxic concentrations. Ammonium chloride did not significantly affect DNA synthesis. The final concentration of nonionized ammonia was less than 3%. It is concluded that lipopolysaccharides of Escherichia coli and intraluminal factors derived from microorganisms increase cell proliferation in human colonic crypts and intestinal epithelial cell lines.  相似文献   

2.
Summary Isolated rat hepatocytes cultured on collagen coated plates exhibit a gradual fetal phenotypic change during time in culture. The fetal liver marker gamma glutamyltransferase (GGT) was used to follow this change. Inasmuch as a significant overgrowth of nonparenchymal liver derived cells is seen frequently in primary cultures of hepatocytes, a technique was utilized that corrects for the presence of nonparenchymal cells. In media supplemented with either hydrocortisone (10−5 M) or nicotinamide (25 mM) the original epithelial morphology of hepatocytes was preserved for a longer period of time than in unsupplemented media. Hepatocytes in unsupplemented media exhibited an increase in GGT specific activity over time. Hydrocortisone (10−5 M) induced an increase in GGT activity compared to controls. Nicotinamide (25 mM) inhibited the increase in GGT activity compared to the unsupplemented hepatocytes. Our results indicate that GGT is regulated by hydrocortisone and nicotinamide. This study was supported by NIH Grant CA30241-01.  相似文献   

3.
Summary An efficient method to produce highly regenerative tissues from seeds of a previously recalcitrant cultivar of Kentucky bluegrass (Poa pratensis L. ev. Kenblue) was established under dim-light conditions (10–30 μE m−2s−1, 16-h light) using media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5 or 9.0 μM), 6-benzylaminopurine (BA; 0.44 or 2.2 μM), and a high level of cupric sulfate (5.0 μM). The tissues were co-transformed with three plasmids containing the genes for hygromycin phosphotransferase (hpt), β-glucuronidase (uidA; gus), and a synthetic green fluorescent protein gene [sgfp(S65T)]. From 463 individual explants bombarded, 10 independent transgenic events (2.2%) were obtained after a 3–4-month selection period for hygromycin resistance using 30–100 mg l−1 hygromycin B; of the 10 independent events, seven (70%) were regenerable. Stable integration of the transgene(s) in transgenic plants was confirmed by polymerase chain reaction and DNA blot hybridization analyses. Coexpression frequency of all three genes was 20%; for two transgenes, either hpt/uidA or hpt/sgfp(S65T), coexpression frequency was 30–40%.  相似文献   

4.
Colchicine effects on growth, oxygen uptake, and adenosine phosphates level of carrot (Daucus carota L.) callus tissue were determined over a period of 18 days after subculture. Colchicine at 10−3 and 10−4 M inhibited the increase in oxygen consumption which was observed with the initiation of callus tissue. Initially the same levels of colchicine stimulated AMP and ADP levels above those of the control, but later the levels returned to those of the control. Colchicine at 10−4 and 10−6 M reduced ATP levels; however, at 10−3 M there was no effect. Growth was not severely affected by the same concentrations during the same treatment period. Oxygen consumption and nucleotide metabolism were more sensitive to colchicine than was growth. Energy charge was calculated to be 0.7–0.8 in both treated and control tissue during 3–15 days in culture. South Carolina Agricultural Experiment Station Journal No. 1840.  相似文献   

5.
Carpospore output and development in the marine red alga Hydropuntia cornea J. Agardh. were increased by adding polyamines (PAs) (putrescine, spermidine and spermine) singly or in combinations at 10−9, 10−6 and 10−3 M. Cell divisions after spore release and development of apical axis between 17 and 21 days characterized carpospore development. PAs increased carpospore development by promoting cell divisions to form cell masses between day 2 and 3. Morphogenesis to develop apical axes occurred at day 7. Spermine at 10−6 M and a combination of putrescine 10−9 M + spermidine 10−9 M + spermine 10−9 M gave a higher number of carpospores and enhanced their further development to sporelings.  相似文献   

6.
Summary Cortisol was previously shown to elicit a concentration-dependent inhibition of α-lactalbumin accumulation in midpregnant mouse mammary gland cultured in medium containing optimal concentrations of 5 μg/ml prolactin and insulin. In contrast, casein accumulation under these conditions was progressively stimulated by addition of increasing amounts of cortisol (Ono, M.; Oka, T. Cell 19: 473–480; 1980). In the present study we found that in the presence of a suboptimal concentration of 0.5 μg/ml prolactin, 2.8×10−9 M to 2.8×10−7 M cortisol stimulated α-lactalbumin accumulation. Furthermore, higher concentrations of cortisol produced a smaller inhibition of α-lactalbumin accumulation as compared to that obtained in cultures containing 5 μg/ml prolactin. The maximal increase in α-lactalbumin accumulation attained in the presence of 1.4×10−8 M cortisol, 0.5 μg/ml prolactin, and insulin was comparable to that observed in culture containing 5 μg/ml prolactin and insulin. Similar results were obtained in a cortisol concentration-response study of α-lactalbumin accumulation in cultures containing a suboptimal concentration of 0.5 μg/ml human placental lactogen. Measurement of the rate of α-lactalbumin synthesis in cultured tissue indicated that the opposing effects of low and high concentrations of cortisol on α-lactalbumin accumulation involved an alteration in the rate of synthesis of the milk protein. In contrast to α-lactalbumin, the synthesis of casein was stimulated in a concentration-dependent manner by addition of cortisol that acted synergistically with either 0.5 μg/ml or 5 μg/ml prolactin. The maximal increases were obtained in the presence of 2.8×10−6 M cortisol. These results indicated that the action of cortisol on α-lactalbumin accumulation can be modulated by the concentration, of prolactin and suggest that the interplay between cortisol and prolactin in regulation of α-lactalbumin synthesis may be different from that involved in casein synthesis.  相似文献   

7.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

8.
Summary The effect of spermidine and fetal bovine serum on DNA, RNA, and protein synthesis in phytohemagglutinin-stimulated human lymphocytes was investigated. At 10−4 M spermidine, DNA, RNA, and protein synthesis ceased and 70% of the original cell population died within 62 hr. Lower spermidine concentrations had no significant effect on DNA and protein synthesis, but caused an early, unexplained increase in the rate of RNA synthesis. Heating at 56°C for 30 min had no effect on the plasma amine oxidase activity in fetal bovine and horse sera but abolished the activity in human plasma. It is concluded that low amounts of aminoaldehydes and acrolein produced by plasma amine oxidase at spermidine concentrations below 10−4 M do not noticeably alter lymphocyte metabolism. However, the aminoaldehydes and acrolein produced become abruptly cytotoxic at 10−4 M spermidine. This work was supported in part by the Cystic Fibrosis Foundation.  相似文献   

9.
Summary Cadmium and zinc uptake parameters were determined for intact corn (Zea mays L.) seedlings grown for 15 and 22 in nutrient solutions containing levels of Cd and Zn that were similar to those found in soil solutions. Uptake of both elements was assumed to follow Michaelis-Menten kinetics. Calculations were based on the concentrations of free ionic Cd (Cd2+) and Zn (Zn2+) rather than the total solution concentration. Rates of Zn uptake were measured by determining depletion of Zn for periods of up to 30 h from solutions containing initial concentrations of 1.5 and 10μmol Zn 1−1. Depletion curves suggested that Zn uptake characteristics were similar at both levels of Zn in solution. The Imax for Zn uptake decreased from 550 to 400 pmol m−2 root surface s−1 between 16 and 22 d of growth while Km decreased from 2.2 to 1.5 μmol Zn2+ 1−1. Cadmium uptake parameters were measured by controlling Cd2+ activities in nutrient solution betwen 6.3 to 164 nmol l−1 by continuous circulation of nutrient solution through a mixed-resin system. Imax for Cd uptake was 400 pmol m−2 root surface s−1 at 15 and 22 d of growth. The magnitude of Km increased from 30 to 100 nmol Cd2+ 1−1 during this time period. The Km value suggests that corn is efficient for Cd uptake. The results of these uptake studies are consistent with the observed uptake of Zn and Cd by corn seedlings in soils.  相似文献   

10.
A microprocessor controlled apparatus is described which can measure, control and record nitrate uptake byLolium perenne in nutrient solution, comparing seven selection lines in duplicate. Nutrient solution flowed at 1 min−1, and linear response was found from 10−1 to 10−4 M NO 3 . Uptake rates for Lolium were between 10−5 and 10−4 M NO 3 , plant−1, h−1, which agreed with previous, manually determined, rates, ‘Overshoot’ in nitrate dosing, which was a problem with manual systems, was eliminated. Nitrate concentration was controlled (±3%) in modified Hoagland’s solution.  相似文献   

11.
Summary Success has been achieved in developing a complete protocol for mass propagation of Anogeissus pendula and A. latifolia, two important forest species found in India. Seeds cultured on plant growth regulator-free, semisolid Murashige and Skoog (MS) medium germinated within 5–6 wk and formed 4–6-cm long shoots. The shoots multiplied on MS+4.4 μM benzyladenine (BA)+5.7 μM indoleacetic acid (IAA) + casein hydrolysate (100 mgl−1) + ascorbic acid (50 mgl−1) + sucrose (3%) + agar (0.8%). A majority of the genotypes rooted with more than 90% efficiency when 5–6 cm individual shoots were cultured on 1/2MS (only major salts reduced to half strength)+2.3 μM IAA+2.5 μM indolebutyric acid (IBA) + sucrose (3%)+agar (0.8%) for 15 d. Those 10% (approx.) genotypes that did not root well on the above medium could be rooted with ease by increasing the concentration of IAA in the rooting media from 2.3 to 5.7 μM. The in vitro-raised plants were successfully transferred to the soil with a success rate of over 85%. Using this protocol, over 560 000 tissue-cultured plants of these two species have been produced and dispatched to various state forest departments for field trials and routine plantations.  相似文献   

12.
Paclitaxel and 10-deacetylbaccatin III (10-DAB III) were produced in suspension cultures of Taxus × media var. Hicksii grown in shake-flasks and in a 7-l bioreactor reaching, in the bioreactor, 4.4 mg l−1 (on day 14) and 37.5 mg l−1 (on day 11). In shake-flasks the highest total content of paclitaxel and 10-DAB III was 7.3 mg l−1 (on day 4) and 8.8 mg l−1 (on day 18). Phenylalanine, at 0.05 mM, increased paclitaxel accumulation in cells cultivated in bioreactor and flasks 30-fold and 9-fold (from 0.02 mg l−1 to 0.6 mg l−1 and to 0.2 mg l−1, respectively). The 10-DAB III content in cells from flasks was increased from 0.4 mg l−1 to 1.6 mg l−1.  相似文献   

13.
Sedum alfredii Hance has been identified as a Zn-hyperaccumulating plant species native to China. The characteristics of Zn uptake and accumulation in the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of S. alfredii were investigated under nutrient solution and soil culture conditions. The growth of HE was normal up to 1000 μM Zn in nutrient solution, and 1600 mg Zn kg−1 soil in a Zn-amended soil. Growth of the NHE was inhibited at Zn levels ≥250 μM in nutrient solution. Zinc concentrations in the leaves and stems increased with increasing Zn supply levels, peaking at 500 and 250 μM Zn in nutrient solution for the HE and the NHE, respectively, and then gradually decreased or leveled off with further increase in solution Zn. Minimal increases in root Zn were noted at Zn levels up to 50 μM; root Zn sharply increased at higher Zn supply. The maximum Zn concentration in the shoots of the HE reached 20,000 and 29,000 mg kg−1 in the nutrient solution and soil experiments, respectively, approximately 20 times greater than those of the NHE. Root Zn concentrations were higher in the NHE than in the HE when plants were grown at Zn levels ≥50 μM. The time-course of Zn uptake and accumulation exhibited a hyperbolic saturation curve: a rapid linear increase during the first 6 days in the long-term and 60 min in the short-term studies; followed by a slower increase or leveling off with time. More than 80% of Zn accumulated in the shoots of the HE at half time (day 16) of the long-term uptake in 500 μM Zn, and also at half time (120 min) of the short-term uptake in 10 μM 65Zn2+. These results indicate that Zn uptake and accumulation in the shoots of S. alfredii exhibited a down-regulation by internal Zn accumulated in roots or leaves under both nutrient solution and soil conditions. An altered Zn transport system and increased metal sequestration capacity in the shoot tissues, especially in the stems, may be the factors that allow increased Zn accumulation in the hyperaccumulating ecotype of S. alfredii. Section Editor: F. J. Zhao  相似文献   

14.
Summary Milk protein gene expression was studied in cell subpopulations of 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinoma cells enriched or depleted for casein production grown on attached collagen gels. Culture of these cells in the presence of 10% fetal bovine serum, insulin (5 μg/ml), hydrocortisone (10 μg/ml), and prolactin (5 μg/ml) maintained α-, β-, and γ-casein and whey acidic protein mRNAs at levels identical to cells isolated from perphenazine-treated rats. Whey acidic protein mRNA levels in the tumor cells relative to the 14-d lactating gland were greater than those of the casein mRNAs. Withdrawal of prolactin from the casein-producing cells resulted in the loss of all four milk protein mRNAs. Subsequent addition of prolactin to the withdrawn cells caused a rapid accumulation of these mRNAs to prewithdrawal levels. Milk protein gene expression in this tumor cell subpopulation is modulated by prolactin (in the presence of insulin and hydrocortisone) in a similar manner to that observed in the normal mammary gland when these tumor cells are cultured on attached collagen gels. This work was supported by National Institutes of Health grant CA 16303. M. L. Johnson was the recipient of NIH Fellowship, HD 06157.  相似文献   

15.
Zinc, cadmium, and copper are known to interact in many transport processes, but the mechanism of inhibition is widely debated, being either competitive or noncompetitive according to the experimental model employed. We investigated the mechanisms of inhibition of zinc transport by cadmium and copper using renal proximal cells isolated from rabbit kidney. Initial rates of65Zn uptake were assessed after 0.5 min of incubation. The kinetics parameters of zinc uptake obtained at 20°C were a Jmax of 208.0±8.4 pmol· min−1·(mg protein)−1, aK m of 15.0±1.5 μM and an unsaturable constant of 0.259±0.104 (n=8). Cadmium at 15 μM competitively inhibited zinc uptake. In the presence of 50 μM cadmium, or copper at both 15 and 50 μM, there was evidence of noncompetitive inhibition. These data suggest that zinc and cadmium enter renal proximal cells via a common, saturable, carrier-mediated process. The mechanisms of the noncompetitive inhibition observed at higher concentrations of cadmium or with copper require further investigation, but may involve a toxic effect on the cytoskeleton.  相似文献   

16.
Arthur Wallace 《Plant and Soil》1970,32(1-3):526-530
Summary Bush bean plants were exposed to either Rb86 or Cs137 for 24 hours with different monovalent cations as carriers in single-salt solutions except for the presence of 10−4 M CaCl2. Ratio of uptake of the radionuclides at 10−3 to 10−2 M was used as an index of the carrier ability of various cations. Different monovalent cations decreased uptake of Cs137 and its transport to shoots unequally when 10−2 M salts were compared with 10−3 M salts. Rubidium and cesium salts decreased Cs137 uptake equally but potassium salts were less effective in decreasing uptake when the ratios of the two concentrations were considered. All monovalent cations decreased uptake of Cs137 at the 10−2 M carrier concentration but some did not at 10−3 M. Nitrate nitrogen was a big factor in these results. Cesium and rubidium salts were most effective. Potassium appeared to increase Cs137 transport to shoots particularly at 10−3 M KNO3. Only cesium, rubidium, and potassium salts decreased uptake of Rb86 when 10−2 M salts were compared with 10−3 M. Rubidium and cesium salts decreased uptake essentially equally and potassium salts again were less effective. All nitrate salts tended to increase Rb86 transport to shoots more consistently than with Cs137. It is concluded that absorption and transport to shoots were not equivalent for potassium, rubidium, and cesium.  相似文献   

17.
A study was conducted to examine aluminum (Al) exclusion by roots of two differentially tolerant soybean (Glycine max L. Merr.) lines, Pl-416937 (Al-tolerant) and Essex (Al-sensitive). Following exposure to 80μM Al for up to 2 h, roots were rinsed with a 10 mM potassium citrate solution and rapidly dissected to allow estimation of intracellular Al accumulation in morphologically distinct root regions. Using 10 min exposures to 300μM 15NO3 and dissection, accompanying effects on NO3 uptake were measured. With Al exposures of 20 min or 2 h, there was greater Al accumulation in all root regions of Essex than in those of Pl-416937. The genotypic difference in Al accumulation was particularly apparent at the root apex, both in the tip and in the adjacent root cap and mucilage. Exposure of roots to Al inhibited the uptake of 15NO3 to a similar extent in all root regions. The results are consistent with Al exclusion from cells in the root apical region being an important mechanism of Al tolerance.  相似文献   

18.
Summary Putrescine-oxidase activity was found in fetal bovine serum (FBS) with a pH optimum of 8.0 and in adult bovine serum (ABS) with a pH optimum of 9.8. The crude FBS enzyme had a KM for putrescine of 2.58×10−6 m and a Vmax of 0.53 nmol per hr per 50 μl serum. Aminoguanidine competitively inhibited the enzyme with a KI of 1.8×10−8 m. Spermidine and spermine proved competitive inhibitors of putrescine for both the FBS and the crude ABS putrescine oxidases. The Vmax for the ABS putrescine oxidase was 2.10 nmol per hr per 50 μl serum, and the KM for putrescine, 50.3×10−6 m. The K1 of the ABS putrescine oxidase for aminoguanidine was 41×10−6 m. On the basis of both the KM and KI values, the adult serum enzyme, at its optimal pH of 9.8, bound spermidine and spermine more avidly than the smaller putrescine and aminoguanidine; whereas the FBS enzyme, at pH 8.0, bound aminoguanidine and putrescine more tightly than the larger polyamines. Each of the enzymes retained over 80% of its activity after heating at 56°C for 30 min. Applications of these data to the study of polyamines in tissue culture and to the purification of diamine oxidases are discussed. This work was supported in part by a grant from the Cystic Fibrosis Foundation.  相似文献   

19.
Summary Goldenseal (Hydrastis canadensis L.), a popular native American medicinal plant, is currently listed as endangered or threatened in over one-third of the states in which it is listed. The objective of this study was to develop an in vitro culture protocol for Goldenseal. Excise embryos were grown on Gamborg's B-5 medium with 0,1 or 10 μM gibberellic acid (GA3), and supplemented with 30 gl−1 sucrose and 8 gl−1 agar. Germinated embryos provided explants (leaf and root tissue) that were subsequently cultured on various media with combinations of naphthleneacetic acid (NAA) and benzyladenine (BA). All NAA/BA combinations produced multiple shoots, roots, and callus. Leaf explants cultured on medium with 1∶10 μM NAA:BA and root explants on medium with 1∶1 μM NAA:BA could be successfully used for mieropropagation.  相似文献   

20.
Summary Na+,K+-ATPase, HCO 3 -ATPase, Ca2+,Mg2+,-ATPase, Ca2+-ATPase, and alkaline phosphatase activities were measured in cultures of osteoblastlike cells treated with fluoride and cortisol separately and in combinations. Low concentrations of cortisol increased HCO 3 -ATPase (10−11 to 10−18 M cortisol) and alkaline phosphatase (10−11 to 10−9 M cortisol) activities, but higher cortisol concentrations reduced these activities. Na+,K+-ATPase, Ca2+,Mg2+-ATPase, and Ca2+-ATPase activities tended only to be reduced by cortisol. Fluoride (10−6 and 5×10−6 M) increased HCO 3 -ATPase and alkaline phosphatase activities, but these activities were similar to controls in the presence of 10−5 M fluoride. Ca2+,Mg2+-ATPase activity was decreased and Na+,K+-ATPase activity was increased as the concentration of fluoride increased (10−6 to 10−5 M). Preliminary experiments with fluoride indicated that lower concentrations (10−7 M) were without effect. Cortisol concentrations of 10−9 and 10−8 M were chosen for studies with combinations of cortisol and fluoride because the effects of these concentrations on alkaline phosphatase activity were opposite, i.e. 10−9 M increased whereas 10−8 M decreased activity. Fluoride concentrations of 10−6, 5×10−6, and 10−5 M were chosen because a peak of alkaline phosphatase activity occurred at 5×10−6 M fluoride. Higher (10−4 M) and lower (10−7 M) fluoride concentrations were without effect. The effects of combinations of cortisol and fluoride depend on the enzyme activity measured. Fluoride (10−6 M) combined with cortisol (10−9 M) produced a peak of Na+,K+-ATPase activity. The increased activity obtained with all concentrations of fluoride alone was preserved when fluoride was combined with 10−8 M cortisol, although the activity tended to be reduced at 5×10−6 and 10−5 M fluoride. HCO 3 -ATPase activity was increased by fluoride combined with 10−8 M cortisol and decreased by fluoride combined with 10−9 M cortisol compared to the activities obtained with fluoride alone. The decrease in Ca2+,Mg2+-ATPase activity caused by fluoride alone was prevented by 10−9 and enhanced by 10−8 M cortisol, although all treatments produced the same activity at 10−5 M fluoride. Ca2+-ATPase activity tended to be increased by combinations of fluoride and cortisol, but significantly so only at 10−5 M fluoride in combinations with 10−8 and 10−9 M cortisol. Alkaline phosphatase activity was increased by fluoride combined with 10−9 M cortisol and decreased by fluoride combined with 10−8 M cortisol compared to the activities obtained with fluoride alone. These results suggest that the abilities of bone cells to regulate ion transport (as reflected in their ion-transporting ATPase activities) are modulated by glucocorticoids and fluoride. Inasmuch as these cells may regulate the ionic composition and concentrations of the bone extracellular fluid (ECF) in vivo, the modulation of their activities by cortisol and fluoride may result in altered bone ECF composition. This work was supported by Grant NAG-2-108 from the National Aeronautics and Space Administration, D.C., and Grant PO1 NS15767 from the National Institute of Neurological and Communicative Disorders and Stroke, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号