首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of signal transduction pathways in regulating developmental processes in a number of organisms has become evident in recent years. This is exceptionally clear for Dictyostelium, which uses soluble factors to regulate morphogenesis and cellular differentiation. It is now known that many of these processes are controlled by signal transduction pathways mediated by cyclic AMP through cell surface receptors coupled to G proteins, and that others are mediated by the morphogen DIF.  相似文献   

2.
The ovine pars tuberalis (PT) still offers the best model for the study of signal transduction pathways regulated by the melatonin receptor. From the evidence accumulated so far, it seems likely that the cAMP signal transduction pathway will be a major effector of a stimulatory signal to the PT which can be regulated by melatonin. Thus a principal action of melatonin in the PT may be the repression of biochemical processes driven by cAMP. However, through the phenomenon of sensitization, melatonin may also act to amplify a stimulatory input to the cAMP signal transduction pathway in the PT. These events are mediated via the melatonin receptor, which is itself a target for regulation by the melatonin signal. Studies using the PT have identified several signalling pathways that may serve to positively or negatively regulate the expression of the melatonin receptor. These and other studies in the PT have alluded to cAMP-independent pathways regulated by the melatonin receptor.  相似文献   

3.
There is increasing evidence that different phospholipids are involved in regulation of various cell processes and cell-cell interactions. Lysophospholipids (lysophosphatidic acid, lysophosphatidylcholine) and a number of lysosphingolipids play particular roles in these regulations. Their effects are mediated by specific G-protein-coupled receptors. G-Protein coupled signal transduction to the cell nucleus involving a chain of intracellular protein kinases induces the main effects in cells--growth, proliferation, survival, or apoptosis. This review summarizes recent data on various groups of lysophospholipid receptors and their cell signal transduction pathways.  相似文献   

4.
The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed.  相似文献   

5.
Inter- and intracellular communications and responses to environmental changes are pivotal for the orchestrated and harmonious operation of multi-cellular organisms. These well-tuned functions in living organisms are mediated by the action of signal transduction pathways, which are responsible for receiving a signal, transmitting and amplifying it, and eliciting the appropriate cellular responses. Mammalian cells posses numerous signal transduction pathways that, rather than acting in solitude, interconnect with each other, a phenomenon referred to as cross-talk. This allows cells to regulate the distribution, duration, intensity and specificity of the response. The cAMP/cAMP-dependent protein kinase (PKA) pathway and the mitogen-activated protein kinase (MAPK) cascades modulate common processes in the cell and multiple levels of cross-talk between these signalling pathways have been described. The first- and best-characterized interconnections are the PKA-dependent inhibition of the MAPKs ERK1/2 mediated by RAF-1, and PKA-induced activation of ERK1/2 interceded through B-RAF. Recently, novel interactions between components of these pathways and new mechanisms for cross-talk have been elucidated. This review discusses both known and novel interactions between compounds of the cAMP/PKA and MAPKs signalling pathways in mammalian cells.  相似文献   

6.
活性氧是细胞代谢中产生的有很强反应活性的分子,易将邻近分子氧化,并参与细胞内多种信号转导途径,对相关生理过程进行调控.自噬是真核细胞通过溶酶体机制对自身组分进行降解再利用的过程,在细胞应激及疾病发生等过程中发挥重要作用.本文对活性氧和自噬相关调节进行分类介绍,根据新近研究进展,从活性氧参与的自噬性死亡、自噬性存活以及线粒体自噬3方面探讨了相关信号转导机制,对活性氧作为信号分子参与的自噬调控途径做一总结和介绍.  相似文献   

7.
Bibb JA 《Neuro-Signals》2003,12(4-5):191-199
Functional and structural neuronal plasticity are mediated by a complex network of biochemical signal transduction pathways that control the strength of specific synapses and the formation of new synapses de novo. The neuronal protein kinase Cdk5 has been implicated as being involved in numerous aspects of both functional and structural plasticity through its regulation of signal transduction pathways. In this review the findings of a number of studies are summarized that have advanced our understanding of how Cdk5 may be involved in these processes. We focus on the modulation of protein phosphatase activity in both the hippocampus and basal ganglia, and review findings that indicate Cdk5 is likely to regulate neuronal plasticity in these brain regions. Studies showing involvement of Cdk5 in reward and motor-based plasticity, which are thought to underlie drug abuse, are discussed.  相似文献   

8.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

9.
Upon the binding of insulin or epidermal growth factor to their cognate receptors on the liver parenchymal plasmalemma, signal transduction and receptor internalization are near co-incident. Indeed, the rapidity and extent; of ligand mediated receptor internalization into endosomes in liver as well as other organs predicts that signal transduction is regulated at this intracellular locus. Although internalization has been thought as a mechanism to attenuate ligand mediated signal transduction responses, detailed studies of internalized receptors in isolated liver endosomes suggest an alternative scenario whereby selective signal transduction pathways can be accessed at this locus.  相似文献   

10.
细胞凋亡是一种程序化的细胞死亡方式,其信号传导通路分为外源性和内源性两条主要途径,线粒体在内源性细胞凋亡途径中扮演着重要的角色.研究表明,运动可通过调节线粒体介导骨骼肌细胞凋亡的进程,而运动调节线粒体介导骨骼肌细胞凋亡信号通路影响机体细胞生物进程的机制仍有待研究.该文主要阐述了线粒体介导细胞凋亡信号传导通路及运动对其的...  相似文献   

11.
Suresh Babu CV  Joo Song E  Yoo YS 《Biochimie》2006,88(3-4):277-283
Modeling, the heart of systems biology, of complex processes (example: signal transduction) is a wide scientific discipline where many approaches from different areas are confronted with the aim of better understanding, identifying and modeling of complex data coming from various sources. The purpose of this paper is to introduce the basic steps of systems biology view towards signaling pathways, which mainly deals with the computational tools. The paper emphasizes the modeling and simulation approach in the signal transduction pathways using the topologies of the biochemical reactions with an overview of the different types of software platforms. Finally, we demonstrated the epidermal growth factor receptor signaling pathway model as an example to study the growth factor mediated signaling system with biological experiments. This paper will enables new comers to underline the strengths of the computational approaches towards signal transduction, as well as to highlight the systems biology research directions.  相似文献   

12.
Apoptosis is a complex biochemical process that involves all aspects of the cell from the plasma membrane to the nucleus. Apoptosis stimuli are mediated by many different cellular processes including protein synthesis and degradation, the alteration in protein phosphorylation states, the activation of lipid second messenger systems, and disruption of normal mitochondrial function. Despite this diversity in signal transduction, all apoptotic pathways are believed to converge ultimately with the activation of caspases leading to the characteristic morphological changes of apoptosis. In this review, we discuss what is known about these pathways and its implication for normal cellular function.  相似文献   

13.
Gefitinib-sensitive nonsmall cell lung cancers (NSCLC) are characterized by somatic mutations in the kinase domain of epidermal growth factor receptor (EGFR). The mutant EGFR forms are reported to mediate characteristic signal transduction pathways that are different from those mediated by the wild-type EGFR and are involved in transformation in vivo. We have examined signal transduction pathways initiated from a frequently identified gefitinib-sensitizing mutant EGFR lacking residues 746-750 by employing a mouse fibroblast cell line that is free of endogenous EGFR and transiently transfected COS-7 cells. Upon EGF stimulation, the deletion-mutant EGFR mediated prolonged downstream signals. The analysis of the phosphotyrosine patterns of the receptor revealed that the deletion-mutant EGFR lacked phosphorylation at tyrosine residue 1045, which is the major binding site of Cbl. The EGF-induced endocytosis of the deletion-mutant EGFR was impaired. The ubiquitination and downregulation of the deletion-mutant EGFR were also reduced. On the other hand, another mutant, EGFR, possessing a L858R substitution, exhibited phosphorylation at 1045 and its downstream signalings were not prolonged. These data suggest that the signal transduction pathways initiated from these mutant forms are different, and that impaired endocytosis might be responsible for the prolonged signals mediated by the deletion-mutant EGFR.  相似文献   

14.
TNF-α信号传导通路的分子机理   总被引:6,自引:0,他引:6  
肿瘤坏死因子α(tumor necrosis factor-alpha,TNF-α)是一种具有多效生物学效应的细胞因子.TNF的生物学效应都是通过细胞表面的2种TNF受体(TNFR)引发,其信号传导通路主要包括caspase家族介导的细胞凋亡、衔接蛋白TRAF介导的转录因子NF-κB和JNK蛋白激酶的活化.TNFR1和TNFR2的生物学功能不是独立的,许多生物学活性由二者共同完成.3条信号传导通路之间及各通路内部含有各种调节机制,使TNF的各种生物学功能协调发挥出来.本文评述了3条信号传导通路最新进展、关键激酶的研究状况及其在整个信号网络中的作用机理,如IKK的激活以及重要的信号转导分子RIP、TRAF2、TRUSS的结构、相互作用的方式等  相似文献   

15.
G B Hecht  T Lane  N Ohta  J M Sommer    A Newton 《The EMBO journal》1995,14(16):3915-3924
Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions. Here we show that in Caulobacter crescentus these systems also play essential roles in the regulation of polar morphogenesis and cell division. Previous studies have implicated histidine kinase genes pleC and divJ in the regulation of these developmental events. We now report that divK encodes an essential, cell cycle-regulated homolog of the CheY/Spo0F subfamily and present evidence that this protein is a cognate response regulator of the histidine kinase PleC. The purified kinase domain of PleC, like that of DivJ, can serve as an efficient phosphodonor to DivK and as a phospho-DivK phosphatase. Based on these and earlier genetic results we propose that PleC and DivK are members of a signal transduction pathway that couples motility and stalk formation to completion of a late cell division cycle event. Gene disruption experiments and the filamentous phenotype of the conditional divK341 mutant reveal that DivK also functions in an essential signal transduction pathway required for cell division, apparently in response to another histidine kinase. We suggest that phosphotransfer mediated by these two-component signal transduction systems may represent a general mechanism regulating cell differentiation and cell division in response to successive cell cycle checkpoints.  相似文献   

16.
17.
Eph-ephrin介导反向信号传递的研究进展   总被引:1,自引:0,他引:1  
双向信号传递是细胞间通讯领域中新近阐明的机制,酪氨酸激酶受体-配体(Eph-ephrin)介导的双向信号传递是此机制中的一个重要代表.Eph酪氨酸激酶家族受体及其配体ephrin家族成员是在神经发育、血管新生等方面起重要作用的分子,通过Eph向细胞内传递的信号称为正向信号,通过其配体ephrin的信号称为反向信号.Ephrin家族又可根据分子结构分为2个亚家族,其中ephrinB为跨膜蛋白,可通过酪氨酸磷酸化依赖和PDZ结合结构域介导2种方式向胞内传递反向信号,活化FAK、JNK、Wnt等信号通路,ephrinA为糖基磷脂酰肌醇锚定蛋白,也具有反向信号传递功能.  相似文献   

18.
19.
Cell proliferation in response to growth factors is mediated by specific high affinity receptors. Ligand-binding by receptors of the protein tyrosine kinase family results in the stimulation of several intracellular signal transduction pathways. Key signalling enzymes are recruited to the plasma membrane through the formation of stable complexes with activated receptors. These interactions are mediated by the conserved, non-catalytic SH2 domains present in the signalling molecules, which bind with high affinity and specificity to tyrosine-phosphorylated sequences on the receptors. The assembly of enzyme complexes is emerging as a major mechanism of signal transduction and may regulate the pleiotropic effects of growth factors.  相似文献   

20.
油菜素甾醇类(brassinosteroid,BR)和生长素是两类重要的植物激素,二者在许多生理功能上存在相关性。近年来的研究表明,BR与生长素能协同调节基因表达,二者在代谢、运输和信号转导途径等不同层次上存在相互作用,并且这两种信号与其他信号转导途径,如激素信号转导途径和光信号转导途径之间也存在信号对话。现对BR与生长素之间这种复杂的相互作用进行评述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号