首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Light saturated photosynthesis (A) in field saplings of shade tolerant, intermediate, and intolerant tree species was analyzed for stomatal and nonstomatal limitations to test differences between species and sun and shade phenotypes during drought. Throughout the study, photosynthesis was highest and mesophyll limitations of A (Lm) lowest in the intolerant species in both open and understory habitats. The shade tolerant species exhibited the only drought-related decreased A and increased Lm in the open, and the greatest drought-related decreased A and increased Lm in the understory. Few species exhibited significant habitat or drought-related differences in stomatal conductance to CO2 (gc), but even slight decreases in gc during drought were associated with large increases in stomatal limitations to A (Lg). Combined changes in Lm and Lg resulted in increased relative stomatal limitation to A (l g) in several species during drought. Nevertheless, the overall lack of stomatal closure allowed for nonstomatal limitations to play a major role in reduced A during drought. Higher leaf N was associated with shallower slope of the l g versus gc relationship, an indication of greater A capacity. Photosynthetic capacity tended to be greater in the intolerant species than the tolerant species, and it tended to decrease during drought primarily in the shade tolerant species in the understory. Findings in the literature suggest that carbon reduction reactions may be more susceptible to drought than photosynthetic light reactions. If so, reduced carbon reduction capacity of shade tolerant species or shade phenotypes may predispose them to drought conditions, which suggests a mechanism behind the well-recognized tradeoff between drought tolerance and shade tolerance of temperate tree species. Received: 20 October 1995 / Accepted: 20 February 1996  相似文献   

2.
In recent years, many studies have focused on the limiting role of mesophyll conductance (gm) to photosynthesis (An) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf‐level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought‐induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought‐induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.  相似文献   

3.
Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re‐watering in a C3 perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, ‘Midnight’ (tolerant) and ‘Brilliant’ (sensitive), were subjected to drought stress for 15 days and then re‐watered for 10 days in growth chambers. Single‐leaf net photosynthetic rate (A), stomatal conductance (gs) and transpiration rate (Tr) decreased during drought, with a less rapid decline in ‘Midnight’ than in ‘Brilliant’. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in ‘Midnight’ than in ‘Brilliant’. The relationship between A and internal leaf CO2 concentration (A/Ci curve) during drought and re‐watering was analyzed to estimate the relative influence of stomatal and non‐stomatal components on photosynthesis. Stomatal limitation (Ls %), non‐stomatal limitation (Lns %), CO2 compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in ‘Midnight’. Maximum CO2 assimilation rate (Amax), carboxylation efficiency (CE) and mesophyll conductance (gm) declined, but ‘Midnight’ had significantly higher levels of Amax, CE and gm than ‘Brilliant’. Maximum carboxylation rate of Rubisco (Vcmax) and ribulose‐1,5‐bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in ‘Brilliant’ than in ‘Midnight’. After re‐watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, gs, Tr and Fv/Fm was only partially recovered, with a higher recovery level in ‘Midnight’ than in ‘Brilliant’. Rubisco activity and activation state restored to the control level after re‐watering, with more rapid increase in ‘Midnight’ than in ‘Brilliant’. The values of Ls, Lns, CP and Rd declined, and Amax, CE, Vcmax, Jmax and gm increased after re‐watering, with more rapid change in all parameters in ‘Midnight’ than in ‘Brilliant’. These results indicated that the maintenance of higher A and Amax under drought stress in drought‐tolerant Kentucky bluegrass could be attributed to higher Rubico activation state, higher CE and less stomatal limitation. The ability to resume metabolic activity (Amax, CE, Fv/Fm and Rubisco) was observed in the drought‐tolerant genotype and is the most likely cause for the increased recuperative ability of photosynthesis. Incomplete recovery of photosynthesis upon re‐watering could be attributable to lasting stomatal limitations caused by severe drought damage in both genotypes. Promoting rapid stomatal recovery from drought stress may be critical for plants to resume full photosynthetic capacity in C3 perennial grass species.  相似文献   

4.
This study employed an intensive sampling regime in which leaf gas exchange and tissue-water relations were measured simultaneously on the same leaf at midday on 19 tree species from three distinct forest communities during wet (1990) and dry (1991) growing seasons. The study sites were located on a xeric barrens, a misic valley floor, and a wet-mesic floodplain in central Pennsylvania, United States. The xeric, mesic, and wetmesic sties had drought-related decreases in gravimetric soil moisture of 53, 34 and 27%, respectively. During the wet year, xeric and mesic communities had high seasonal mean photosynthetic rates (A) and stomatal conductance of water vapor (g wv) and low midday leaf water potential (), whereas the wet-mesic community had low A and g wv and high midday . The mesic and wet-mesic communities had dry year decreases in predawn , g wv and A with the greatest drought effect occurring in the mesic community. Regression analysis indicated that species from each site that exhibited high wet-year A and g wv tended to have low midday . This trend was reversed only in the mesic community in the drought year. Despite differences in midday , all three communities had similar midday leaf turgor pressure (p) in the wet year attributable to lower osmotic potential at zero turgor ( 0 ) with increasing site droughtiness. Lower wet year 0 in the xeric community was due to low symplast volume rather than high solute content. Species with the lowest 0 in the wet year often did not have the lowest 100 possibly related to differences in tissue elasticity. Moreover, increased elasticity during drought may have masked osmotic adjustment in 100 but not in 0 , via dilution of solutes at full hydration in some species. Despite the sampling regime used, there were no relationships between gas exchange and osmotic and elastic parameters that were consistently significant among communities or years. This result questions the universal, direct effect of osmotic and elastic adjustments in the maintenance of photosynthesis during drought. By including a large number of species, this study provided new insight to the ecophysiology of contrasting forest communities, and the community-wide impact of drought on contrasting sites.  相似文献   

5.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

6.
Gas exchange measurements were carried out on ash and oak trees in a forest plantation during three whole growing seasons characterized by different water availability (2001, 2002 and 2003). A quantitative limitation analysis was applied to estimate the effects of drought and leaf ontogeny on stomatal (SL) and non-stomatal limitations (NSL) to light-saturated net photosynthesis (Amax), relative to the seasonal maximum rates obtained under conditions of optimal soil water content. Furthermore, based on combined gas exchange and chlorophyll fluorescence measurements, NSL was partitioned into a diffusive (due to a decrease in mesophyll conductance, MCL) and a biochemical component (due to a decrease in carboxylation capacity, BL). During the wettest year (2002), the seasonal pattern of both Amax and stomatal conductance (gsw) was characterized in both species by a rapid increase during spring and a slight decline over the summer. However, with a moderate (year 2001) or a severe (year 2003) water stress, the summer decline of Amax and gsw was more pronounced and increased with drought intensity (30–40% in 2001, 60–75% in 2003). The limitation analysis showed that during the spring and the autumn periods SL, MCL and BL were of similar magnitude. By contrast, from the summer data it emerged that all the limitations increased with drought intensity, but their relative contribution changed. At mild to moderate water stress (corresponding to values of gsw > 100 mmol H2O m−2 s−1) about two-thirds of the decline in Amax was attributable to SL. However, with increasing drought intensity, NSL increased more than SL and nearly equalled it when the stress was very severe (i.e. with gsw < 60 mmol H2O m−2 s−1). Within NSL, MCL represented the main component, except at the most severe water stress levels when it was equalled by BL. It is concluded that diffusional limitations (i.e. SL + MCL) largely affect net assimilation during most of the year, whereas biochemical limitations are quantitatively important only during leaf development and senescence or with severe droughts.  相似文献   

7.
It is still unknown whether the midday depression of photosynthesis under severe water stress, frequently observed in plants growing in a Mediterranean-type climate, is primarily a consequence of diffusional or non-diffusional limitations. We carried out combined measurements of gas exchanges and chlorophyll fluorescence in field-grown Arbutus unedo L. trees during late spring and mid summer, and a quantitative limitation analysis was performed to distinguish between the different limitations to photosynthesis, i.e., diffusional [D L = stomatal (S L) + mesophyll (MCL)] and non-diffusional (carboxylation capacity and electron transport, B L) limitations. Light-saturated assimilation at ambient CO2 (A max), stomatal conductance to water vapour (g sw) and maximum carboxylation rate (V cmax C i) showed a marked midday depression during both periods. The total limitations tended to increase during the day and were remarkably similar in June and July (50 and 48%, respectively); on a daily basis, D L was similar to B L (about 23%) in June; whereas, in July the former was predominant (38 and 4%, respectively). We concluded that the midday depression in photosynthesis was largely caused by diffusional limitations, with non-diffusional limitations playing a smaller role. Although stomatal closure was the main diffusional limitation, the decline in mesophyll conductance was not negligible during the hottest and driest period.  相似文献   

8.
Global climate change is expected to result in more frequent and intense droughts in the Mediterranean region. To understand forest response to severe drought, we used a mobile rainfall shelter to examine the impact of spring and autumn rainfall exclusion on stomatal (SL) and non‐stomatal (NSL) limitations of photosynthesis in a Quercus ilex ecosystem. Spring rainfall exclusion, carried out during increasing atmospheric demand and leaf development, had a larger impact on photosynthesis than autumn exclusion, conducted at a time of mature foliage and decreasing vapour pressure deficit. The relative importance of NSL increased with drought intensity. SL and NSL were equal once total limitation (TL) reached 60%, but NSL greatly exceeded SL during severe drought, with 76% NSL partitioned equally between mesophyll conductance (MCL) and biochemical (BL) limitations when TL reached 100%. Rainfall exclusion altered the relationship between leaf water potential and photosynthesis. In response to severe mid‐summer drought stress, An and Vcmax were 75% and 72% lower in the spring exclusion plot than in the control plot at the same pre‐dawn leaf water potential. Our results revealed changes in the relationship between photosynthetic parameters and water stress that are not currently included in drought parameterizations for modelling applications.  相似文献   

9.
The photosynthetic characterization of the oriental lily (Lilium) cv. Sorbonne and its response to increasing water stress were analyzed based on the net photosynthetic rate (P n), stomatal conductance (g s), intercellular CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and stomatal limitation (Ls) in the Horqin Sandy Land of western China. A photosynthesis-PAR response curve was constructed to obtain light-compensation and light-saturation points (LCP and LSP), the maximum photosynthetic rates (P max) and dark respiration rates (R D). The growth of lilies in the pots was analyzed after anthesis. Various intensities of water stress (5, 10, and 20 days without water, and an unstressed control) were applied. The results indicated that drought stress not only significantly decreased P n, E, g s, photosynthetic pigment content (Chl a, Chl b, and Chl (a + b)) and increased intrinsic water use efficiency (WUE), but also altered the diurnal pattern of gas exchange. Drought stress also affected the photosynthesis (P n)-PAR response curve. Drought stress increased LCP and R D and decreased LSP and P max. There were both stomatal and nonstomatal limitations to photosynthesis. Stomatal limitation dominated in the morning, whereas nonstomatal limitation dominated in the afternoon. Thus, drought stress decreased potential photosynthetic capacity and affected the diurnal pattern of gas exchange and P n-PAR response curves, thereby reducing plant quality (lower plant height, flower length, flower diameter, and leaf area). Water stress is likely the main limitation to primary photosynthetic process in the lily. Appropriate watering is recommended to improve photosynthetic efficiency and alleviate photodamage, which will increase the commercial value of the lily in the Horqin Sandy Land.  相似文献   

10.
Mesophyll conductance (gm) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well‐watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN) under drought conditions was related to a decline in gm and in stomatal conductance (gs). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm, its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc/S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.  相似文献   

11.
While the adverse effects of elevated salinity levels on leaf gas exchange in many crops are not in dispute, representing such effects on leaf photosynthetic rates (A) continues to draw research attention. Here, an optimization model for stomatal conductance (gc) that maximizes A while accounting for mesophyll conductance (gm) was used to interpret new leaf gas exchange measurements collected for five irrigation water salinity levels. A function between chloroplastic CO2 concentration (cc) and intercellular CO2 concentration (ci) modified by salinity stress to estimate gm was proposed. Results showed that with increased salinity, the estimated gm and maximum photosynthetic capacity were both reduced, whereas the marginal water use efficiency λ increased linearly. Adjustments of gm, λ and photosynthetic capacity were shown to be consistent with a large corpus of drought‐stress experiments. The inferred model parameters were then used to evaluate the combined effects of elevated salinity and atmospheric CO2 concentration (ca) on leaf gas exchange. For a given salinity level, increasing ca increased A linearly, but these increases were accompanied by mild reductions in gc and transpiration. The ca level needed to ameliorate A reductions due to increased salinity is also discussed using the aforementioned model calculations.  相似文献   

12.
Abstract

Photosynthesis and photoprotective mechanisms were investigated in the field on Laurus nobilis L. and Quercus ilex L. leaves exposed to summer drought (July) and winter cold (February) conditions compared with no-stress conditions (May). In July, net photosynthetic rate (A) and stomatal conductance (g s) decreased significantly compared with May in both species; conversely the highest ETR/A ratio and no difference in non-photochemical quenching (NPQ) was observed. In February A, g s and ETR/A declined compared with May but the highest NPQ were found in both species. Our data suggest that during summer, an increase of photochemical alternative pathways to carbon reduction, were able to effectively protect the photosynthetic apparatus under drought. In winter, the thermal dissipation of excess absorbed light constitutes the main safety valve for the photosynthetic apparatus.  相似文献   

13.
We examined factors that limit diurnal and seasonal photosynthesis in Leymus cinereus, a robust tussock grass from shrub-steppes of western North America. Data from plants in a natural stand and in experimental field plots indicate that this bunchgrass has 1) a high photosynthetic capacity, 2) high leaf nitrogen content and high nitrogen-use efficiency, 3) a steep leaf-to-air diffusion gradient for carbon dioxide, which enhances intrinsic water-use efficiency, and 4) photosynthetic tissues that tolerate severe water stress and recover quickly from moderate water stress. Midday depressions of CO2 assimilation (A) and stomatal conductance were slight in plants with plentiful water, but marked in plants subject to moderate water stress. Midday stomatal closure in moderately stressed plants reduced intercellular carbon dioxide concentration (ci) by ≈40 μl liter-1. The maximum rate of A achieved during the day for severely stressed plants (predawn water potential = -4 MPa) was one-third and daily carbon gain per unit leaf area was about one-fourth that of well-watered plants. For plants in the natural stand, CO2-saturated photosynthesis declined almost linearly with decreasing soil water availability over the growing season, whereas there was little effect on A at CO2 ambient levels or on carboxylation efficiency until predawn water potentials reached -1.8 MPa. Nitrogen-use efficiency declined with diminishing soil moisture, but there was no seasonal change in stomatal limitation or instantaneous water-use efficiency as estimated from A vs. ci curves at optimal leaf temperature and moderate atmospheric evaporative demand. Thus, reduced stomatal conductance in response to increased evaporative demand may increase stomatal limitation diumally, but over the growing season, stomatal limitation estimated from A vs. ci curves is relatively constant because maximum stomatal conductance is closely tuned to the CO2 assimilatory capacity of the mesophyll.  相似文献   

14.
Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short‐time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre‐defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re‐watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re‐watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long‐term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water‐use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.  相似文献   

15.
Regulation of stomatal (gs) and mesophyll conductance (gm) is an efficient means for optimizing the relationship between water loss and carbon uptake in plants. We assessed water‐use efficiency (WUE)‐based drought adaptation strategies with respect to mesophyll conductance of different functional plant groups of the forest understory. Moreover we aimed at assessing the mechanisms of and interactions between water and CO2 conductance in the mesophyll. The facts that an increase in WUE was observed only in the two species that increased gm in response to moderate drought, and that over all five species examined, changes in mesophyll conductance were significantly correlated with the drought‐induced change in WUE, proves the importance of gm in optimizing resource use under water restriction. There was no clear correlation of mesophyll CO2 conductance and the tortuosity of water movement in the leaf across the five species in the control and drought treatments. This points either to different main pathways for CO2 and water in the mesophyll either to different regulation of a common pathway.  相似文献   

16.
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water‐use efficiency through modifications in both stomatal (gs) and mesophyll conductances (gm). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (Sc). In addition, the lower gm/Sc ratio for a given porosity in drought‐acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought‐associated changes in the morphological properties of stomata, in an accession and treatment‐dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level.  相似文献   

17.
Under drought conditions, leaf photosynthesis is limited by the supply of CO2. Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L] using an ABA‐deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL) because leaf hydraulics may be related to gm. Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose‐dependent manner. ΨL in WT was decreased by the drought treatment to ?0.7 MPa, whereas ΨL in aba1 was around ?0.8 MPa even under the well‐watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics.  相似文献   

18.
Photosynthesis and photoinhibition in two xerophytic shrubs during drought   总被引:1,自引:0,他引:1  
Seasonal changes in water relations, net photosynthetic rate (P N), and fluorescence of chlorophyll (Chl) a of two perennial C3 deciduous shrubs, Ipomoea carnea and Jatropha gossypifolia, growing in a thorn scrub in Venezuela were studied in order to establish the possible occurrence of photoinhibition during dry season and determine whether changes in photochemical activity of photosystem 2 (PS2) may explain variations of P N in these species. Leaf water potential () decreased from –0.2 to –2.1 MPa during drought in both species. The P N decreased with in I. carnea and J. gossypifolia by 64 and 74 %, respectively. Carboxylation efficiency (CE) decreased by more than 50 and 70 % in I. carnea and J. gossypifolia, respectively. In I. carnea, relative stomatal limitation (Ls) increased by 17 % and mesophyll limitation (Lm) by 65 % during drought, while in J. gossypifolia Ls decreased by 27 % and Lm increased by 51 %. Drought caused a reduction in quantum yield of PS2 (PS2) in both species. Drought affected the capacity of energy dissipation of leaves, judging from the changes in the photochemical (qP) and non-photochemical quenching (NPQ) coefficients. Photoinhibition during drought in I. carnea and J. gossypifolia was evidenced in the field by a drop in the maximum quantum yield of PS2 (Fv/Fm) below 0.8 and also by non-coordinated changes in PS2 and quantum yield of non-photochemical excitation quenching (Yn). Total soluble protein content on an area basis increased with but the ribulose-1,5-bisphosphate carboxylase/oxygenase content remained unchanged. A reduction of total Chl content with drought was observed. Hence in the species studied photoinhibition occurred, which imposed an important limitation on carbon assimilation during drought.  相似文献   

19.
We measured foliar NH3 volatilization as part of our study of the decrease (up to 40%) in shoot N concentration during drought in three perennial C4 grasses of tallgrass prairie. Volatilization of recently expanded leaves was quantified using cuvettes and acid traps for Spartina pectinata, Andropogon gerardii, and Schizachyrium scoparium, a mesic, intermediate, and xeric species, respectively. In general, volatilization decreased during drought, approaching zero as stomates closed, and increased with plant N status and drought tolerance. Prior to drought, NH3 volatilization was greater in xeric than mesic species (179 and 131 vs. 115 ng m-2 s-1 for individual leaves of S. scoparium and A. gerardii vs. Sp. pectinata). During a 2–3 week drought, whole-shoot volatile N losses can exceed 5% of total plant N in these species, accounting for 2–10% of the decrease in shoot percent N (again, xeric > mesic). Drought-induced N retranslocation of shoot N to roots and rhizomes is responsible for c. 63% of the decrease in percent N in Sp. pectinata, 28% in A. gerardii, and 8% in S. scoparium. The remainder of the decrease in percent N is attributable to growth dilution of existing shoot N, accounting for 34, 65, and 87% of the decrease in shoot percent N during drought in Sp. pectinata, A. gerardii, and S. scoparium, respectively. Thus, the relative importance of volatilization, retranslocation, and dilution in decreasing foliar percent N during drought in prairie grasses is species dependent and related to drought tolerance.  相似文献   

20.
We assessed the daily time‐courses of CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance for water vapour (gs), leaf water potential ( Ψ w) and tree transpiration in a wet and a dry season for three late‐stage canopy rainforest tree species in French Guiana differing in leaf carbon isotope composition ( δ 13C). The lower sunlit leaf δ 13C values found in Virola surinamensis ( ? 29·9‰) and in Diplotropis purpurea ( ? 30·9‰), two light‐demanding species, as compared to Eperua falcata ( ? 28·6‰), a shade‐semi‐tolerant species, were clearly associated with higher maximum gs values of sunlit leaves in the two former species. These two species were also characterized by a high sensitivity of gs, sap flow density (Ju) and canopy conductance (gc) to seasonal soil drought, allowing maintenance of high midday Ψ w values in the dry season. The data for Diplotropis provided an original picture of increasing midday Ψ w with increasing soil drought. In Virola, stomata were extremely sensitive to seasonal soil drought, leading to a dramatic decrease in leaf and tree transpiration in the dry season, whereas midday Ψ w remained close to ? 0·3 MPa. The mechanisms underlying such an extremely high sensitivity of stomata to soil drought remain unknown. In Eperua, gs of sunlit leaves was non‐responsive to seasonal drought, whereas Ju and gc were lower in the dry season. This suggests a higher stomatal sensitivity to seasonal drought in shaded leaves than in sunlit ones in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号