首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecules in the midgut of tsetse flies (Diptera: Glossinidiae) are thought to play important roles in the life cycle of African trypanosomes by influencing initial parasite establishment and subsequent differentiation events that ultimately lead to maturation of mammal-infective trypanosomes. The molecular composition of the tsetse midgut is, therefore, of critical importance to disease transmission by these medically important vectors. In this study we compared protein expression profiles of midguts of the salmon mutant and wild type Glossina morsitans morsitans Westwood that display marked differences in their susceptibility to infection by African trypanosomes. Isotope coded affinity tag (ICAT) technology was used to identify 207 proteins including 17 that were up regulated and nine that were down regulated in the salmon mutants. Several of the up regulated molecules were previously described as tsetse midgut or salivary gland proteins. Of particular interest was the up regulation in the salmon flies of tsetse midgut EP protein, a recently described molecule with lectin-like activity that was also found to be induced in tsetse by bacterial challenge. The up regulation of the EP protein in midguts of salmon mutants was confirmed by two-dimensional gel electrophoresis and tandem mass spectrometry.  相似文献   

2.
The tsetse fly (Glossina spp.) is an obligate blood-sucking insect that transmits different human-pathogenic and livestock threatening trypanosome species in Africa. To obtain more insight in the tsetse salivary function, some general aspects of the tsetse fly saliva and its composition were studied. Direct pH and protein content measurements revealed a moderately alkaline (pH approximately 8.0) salivary environment with approximately 4.3 microg soluble proteins per gland and a constant representation of the major saliva proteins throughout the blood-feeding cycle. Although major salivary genes are constitutively expressed, upregulation of salivary protein synthesis within 48 h after the blood meal ensures complete protein replenishment from day 3 onwards. Screening of a non-normalised Glossina morsitans morsitans lambdagt11 salivary gland expression library with serum from a saliva-immunized rabbit identified three full-length cDNAs encoding for novel salivary proteins with yet unknown functions: a 8.3 kDa glycine/glutamate-rich protein (G. morsitans morsitans salivary gland protein Gmmsgp1), a 12.0 kDa proline-rich protein (Gmmsgp2), and a 97.4 kDa protein composed of a metallophosphoesterase/5'nucleotidase region with a glutamate/aspartate/asparagines-rich region (Gmmsgp3).  相似文献   

3.
Molecules in the midgut of the tsetse fly (Diptera: Glossinidiae) are thought to play an important role in the life cycle of African trypanosomes by influencing their initial establishment in the midgut and subsequent differentiation events that ultimately affect parasite transmission. It is thus important to determine the molecular composition of the tsetse midgut to aid in understanding disease transmission by these medically important insect vectors. Here, we report that the most abundant protein in the midguts of teneral (unfed) Glossina morsitans morsitans is a 60 kDa molecular chaperone of bacterial origin. Two species of symbiotic bacteria reside in the tsetse midgut, Sodalis glossinidius and Wigglesworthia glossinidia. To determine the exact origin of the 60 kDa molecule, a protein microchemical approach involving two-dimensional (2-D) gel electrophoresis and mass spectrometry was used. Peptide mass maps were compared to virtual peptide maps predicted for S. glossinidius and W. glossinidia 60 kDa chaperone sequences. Four signature peptides were identified, revealing that the source of the chaperone was W. glossinidia. Comparative 2-D gel electrophoresis and immunoblotting further revealed that this protein was localized to the bacteriome and not the distal portion of the tsetse midgut. The possible function of this highly abundant endosymbiont chaperone in the tsetse midgut is discussed.  相似文献   

4.
Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.  相似文献   

5.
6.
Tsetse flies (Glossina sp.) are blood-feeding dipteran insects that transmit African trypanosomes, parasites that are responsible for human sleeping sickness and veterinary infections. Increasing attention is being paid to the effects of tsetse fly saliva deposited at the feeding site, which enables the blood-feeding process and putatively promotes parasite transmission. Here we demonstrate that saliva induces strong humoral responses against the major 43-45 kDa protein fraction (tsetse salivary gland proteins 1 and 2 - Tsal1 and Tsal2) in mice and humans and suppresses murine T and B cell responses to heterologous antigen. The saliva-induced immune response is associated with a Th2-biased cytokine profile and the production of mainly IgG1 and IgE antibody isotypes. Functionally, the antibodies raised in mice exposed to tsetse fly bites or induced after experimental saliva immunisation do not affect the fly's blood-feeding efficiency nor its survival. We propose that anti-saliva as well as anti-Tsal1/2 antibody responses can be used in epidemiological studies as a tool to analyze human exposure to tsetse flies.  相似文献   

7.

Background

Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, but the mechanism of how trypanosomes do so is not understood. In order to better comprehend the molecular events surrounding trypanosome penetration of the tsetse PM, a mass spectrometry-based approach was applied to investigate the PM protein composition using Glossina morsitans morsitans as a model organism.

Methods

PMs from male teneral (young, unfed) flies were dissected, solubilised in urea/SDS buffer and the proteins precipitated with cold acetone/TCA. The PM proteins were either subjected to an in-solution tryptic digestion or fractionated on 1D SDS-PAGE, and the resulting bands digested using trypsin. The tryptic fragments from both preparations were purified and analysed by LC-MS/MS.

Results

Overall, nearly 300 proteins were identified from both analyses, several of those containing signature Chitin Binding Domains (CBD), including novel peritrophins and peritrophin-like glycoproteins, which are essential in maintaining PM architecture and may act as trypanosome adhesins. Furthermore, 27 proteins from the tsetse secondary endosymbiont, Sodalis glossinidius, were also identified, suggesting this bacterium is probably in close association with the tsetse PM.

Conclusion

To our knowledge this is the first report on the protein composition of teneral G. m. morsitans, an important vector of African trypanosomes. Further functional analyses of these proteins will lead to a better understanding of the tsetse physiology and may help identify potential molecular targets to block trypanosome development within the tsetse.  相似文献   

8.
1. The major protein in the milk gland secretions of the tsetse fly, Glossina morsitans morsitans, was isolated by a combination of gel permeation chromatography and crystallization. 2. It has a native Mr approximately 47,000 and is composed of two identical polypeptide chains (Mr approximately 21,000) as determined by chemical cross-linking studies. The protein has no covalently-bound carbohydrates or lipids. Amino acid analysis of the protein revealed relatively high amounts of the aromatic amino acids, tyrosine (9.1 mol.%) and phenylalanine (8.5 mol.%). Immunoblotting experiments using antiserum against the protein revealed no cross-reactivity with any other milk proteins. 3. Quantitation of the protein during the pregnancy cycle showed that synthesis of the protein by the milk glands of adult female flies starts as the larva moults into second instar and rapidly declines as it matures into third instar. 4. It is proposed that the major milk gland protein could provide essential amino acids needed for the puparium formation.  相似文献   

9.
Trypanosoma brucei, the parasite causing human sleeping sickness, relies on the tsetse fly for its transmission. In the insect, EP and GPEET procyclins are the major surface glycoproteins of procyclic (midgut) forms of the parasite, with GPEET predominating in the early procyclic form and two isoforms of EP in the late procyclic form. EP procyclins were previously detected on salivary gland trypanosomes, presumably epimastigotes, by immunoelectron microscopy. However, no procyclins could be detected by mass spectrometry when parasites were isolated from infected glands. We have used qualitative and quantitative RT-PCR to analyse the procyclin mRNAs expressed by trypanosomes in the tsetse midgut and salivary glands at different time points after infection. The coding regions of the three EP isoforms (EP1, EP2 and EP3) are extremely similar, but their 3' untranslated regions contain unique sequences that make it possible to assign the cDNAs amplified by this technique. With the exception of EP2, we found that the spectrum of procyclin mRNAs expressed in the midgut mirrors the protein repertoire of early and established procyclic forms. Surprisingly, procyclin mRNAs, including that of GPEET, are present at relatively high levels in salivary gland trypanosomes, although the proteins are rarely detected by immunofluorescence. Additional experiments using transgenic trypanosomes expressing reporter genes or mutant forms of procyclin point to a mechanism of translational or post-translational control, involving the procyclin coding regions, in salivary gland trypanosomes. It is widely accepted that T. brucei always has a coat of either variant surface glycoprotein or procyclin. It has been known for many years that the epimastigote form does not have a variant surface glycoprotein coat. The finding that this life cycle stage is usually negative for procyclin as well is new, and means that the paradigm will need to be revised.  相似文献   

10.
Trypanosoma brucei brucei, derived from the salivary glands of infected tsetse flies (Glossina morsitans morsitans) and maintained in culture for over 4 years, were infective to both albino rats and tsetse flies. Virulence was markedly enhanced during the first passage in albino rats or tsetse flies. Irradiated cultured trypanosomes induced immunity to homologous challenge but not to tsetse fly or blood-induced challenge with the same stock.  相似文献   

11.
Tsetse are vectors of pathogenic trypanosomes, agents of human and animal trypanosomiasis in Africa. Components of tsetse saliva (sialome) are introduced into the mammalian host bite site during the blood feeding process and are important for tsetse’s ability to feed efficiently, but can also influence disease transmission and serve as biomarkers for host exposure. We compared the sialome components from four tsetse species in two subgenera: subgenus Morsitans: Glossina morsitans morsitans (Gmm) and Glossina pallidipes (Gpd), and subgenus Palpalis: Glossina palpalis gambiensis (Gpg) and Glossina fuscipes fuscipes (Gff), and evaluated their immunogenicity and serological cross reactivity by an immunoblot approach utilizing antibodies from experimental mice challenged with uninfected flies. The protein and immune profiles of sialome components varied with fly species in the same subgenus displaying greater similarity and cross reactivity. Sera obtained from cattle from disease endemic areas of Africa displayed an immunogenicity profile reflective of tsetse species distribution. We analyzed the sialome fractions of Gmm by LC-MS/MS, and identified TAg5, Tsal1/Tsal2, and Sgp3 as major immunogenic proteins, and the 5''-nucleotidase family as well as four members of the Adenosine Deaminase Growth Factor (ADGF) family as the major non-immunogenic proteins. Within the ADGF family, we identified four closely related proteins (TSGF-1, TSGF-2, ADGF-3 and ADGF-4), all of which are expressed in tsetse salivary glands. We describe the tsetse species-specific expression profiles and genomic localization of these proteins. Using a passive-immunity approach, we evaluated the effects of rec-TSGF (TSGF-1 and TSGF-2) polyclonal antibodies on tsetse fitness parameters. Limited exposure of tsetse to mice with circulating anti-TSGF antibodies resulted in a slight detriment to their blood feeding ability as reflected by compromised digestion, lower weight gain and less total lipid reserves although these results were not statistically significant. Long-term exposure studies of tsetse flies to antibodies corresponding to the ADGF family of proteins are warranted to evaluate the role of this conserved family in fly biology.  相似文献   

12.
13.
14.
Tsetse flies (Diptera:Glossinidae) are vectors of African trypanosomes, the protozoan agents of devastating diseases in humans and animals. Prior studies in trypanosome infected Glossina morsitans morsitans have shown induced expression and synthesis of several antimicrobial peptides in fat body tissue. Here, we have expressed one of these peptides, Attacin (GmAttA1) in Drosophila (S2) cells in vitro. We show that the purified recombinant protein (recGmAttA1) has strong antimicrobial activity against Escherichia coli-K12, but not against the enteric gram-negative symbiont of tsetse, Sodalis glossinidius. The recGmAttA1 also demonstrated inhibitory effects against both the mammalian bloodstream form and the insect stage Trypanosoma brucei in vitro (minimal inhibitory concentration MIC50 0.075 microM). When blood meals were supplemented with purified recGmAttA1 during the course of parasite infection, the prevalence of trypanosome infections in tsetse midgut was significantly reduced. Feeding fertile females GmAttA1 did not affect the fecundity or the longevity of mothers, nor did it affect the hatchability of their offspring. We discuss a paratransgenic strategy, which involves the expression of trypanocidal molecules such as recGmAttA1 in the midgut symbiont Sodalis in vivo to reduce trypanosome transmission.  相似文献   

15.
16.
Abstract. Teneral Glossina morsitans centralis and G. brevipalpis were fed in vitro upon medium containing procyclic Trypanosoma brucei brucei derived from the midguts of G. m. centralis or G. brevipalpis which had immature trypanosome infections. The tsetse were then maintained on rabbits and, on day 31, were dissected to determine the infection rates. In G. m. centralis the midgut and salivary gland infection rates by T. b. brucei were 46.0% and 27.0% with procyclic trypanosomes from G. m. centralis, and 45.4% and 24.7% with procyclic trypanosomes from G. brevipalpis, respectively. In G. brevipalpis the rates were 20.2% and 0.0% with procyclic trypanosomes from G. m. centralis, and 28.0% and 0.0% with procyclic trypanosomes from G. brevipalpis, respectively. Teneral G. m. centralis and G. brevipalpis were also fed similarly upon procyclic T. b. brucei derived from G.m.centralis or G. brevipalpis on day 31 of infection, the former tsetse species had mature infections while the latter were without infections in the salivary glands. In G.m.centralis the infection rates in the midgut and salivary glands were 48.9% and 17.0%, and 38.0% and 17.0% when fed on procyclic trypanosomes from G.m.centralis and G. brevipalpis, respectively. In G. brevipalpis the rates were 21.5% and 0.0%, and 10.7% and 0.0% with procyclic trypanosomes of G.m.centralis and G. brevipalpis origin, respectively. Thus, procyclic T. b. brucei from susceptible G.m.centralis could not complete cyclical development in refractory G. brevipalpis, whereas those from G. brevipalpis developed to metatrypanosomes in the salivary glands of G.m.centralis. Teneral and 15-day-old non-teneral G.m.centralis were fed in vitro upon heparinized goat's blood containing T. b. brucei bloodstream trypomastigotes, or upon medium containing procyclic T. b. brucei derived from G.m.centralis with mature infections. On day 31 their infection rates were determined. The infection rates by T. b. brucei in the midgut and salivary glands of G.m.centralis fed on the infected blood were 70.4% and 40.4% when fed as teneral tsetse, as against 15.3% and 4.0% when fed as non-teneral tsetse. Those tsetse which were fed on the medium containing procyclic trypanosomes showed rates of 50.0% and 25.6%, as against 11.6% and 2.5%, respectively. It would appear, therefore, that maturation of T. b. brucei in tsetse is probably not determined simply by an interaction between lectin and procyclic trypanosomes in the midgut of non-teneral tsetse, but it is the result of a complex interaction between many interrelated physiological factors of both the trypanosome and the tsetse vector.  相似文献   

17.
1 Metacyclic forms of Trypanosoma brucei obtained from the salivary glands of the tsetse fly, Glossina morsitans have been cultured for the first time in their infective forms for more than 200 days in continuous culture. The parasites were grown at 25 C and 30 C on a bovine embryonic spleen (BESP) feeder layer in buffered RPMI 1640 medium supplemented with 20% heat-inactivated bovine fetal serum (BFS) and 5% lactalbumin hydrolysate. Initial growth rate was enhanced when normal, noninfected, salivary glands were added to the cultures. The parasites thus cultured appeared like slender or intermediate blood stream forms which were infective to rats and mice. Addition of rat anti-T. brucei specific antiserum to the cultures caused agglutination of the parasites and rendered them noninfective. This study opens up new areas of investigating sleeping sickness. The cultured metacyclic parasites have the potential of being applied as antigens for controlling African trypanosomiasis.  相似文献   

18.

Background

Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts.

Methodology/Principal Findings

A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%).

Conclusion/Significance

We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck.  相似文献   

19.
Several dipteran insects are vectors of parasites causing major human infectious diseases. Among these, the tsetse fly, Glossina spp., is responsible for the transmission of trypanosomes, the pathogens responsible for sleeping sickness in Africa. A better understanding of insect-parasite interactions will help establish new strategies to fight this important often fatal disease. Antimicrobial peptides (AMPs) are part of the humoral immune response in insects during bacterial, fungal and parasitic infections. Here, we studied the immune response of Glossina morsitans to bacteria and to Trypanosoma brucei brucei by analyzing the synthesis of AMPs as markers of the humoral immune response. By reversed-phase chromatography, mass spectrometry analysis, Edman degradation and in vitro antimicrobial assays of the hemolymph of immune-challenged adults of G. morsitans, we identified three AMPs: a cecropin, an attacin and a defensin. These three AMPs were found to be induced upon systemic bacterial infection and also after per os infections by bacteria and parasites.  相似文献   

20.
African trypanosomes live in the lumen of the gut of tsetse (Glossina) and may have to face an immune response. As yet, it is unclear whether they are sensitive to antimicrobial peptides in vivo, but for some years there has been indirect evidence that one or more lectins can influence the infection. We have purified a protein complex from midgut extracts that, by SDS-PAGE, is a doublet of 37 and 38 kDa in a ratio of 3:1. Through prediction from corresponding cDNA clones, the full-length protein (tsetseEP) contains 320 amino acids, including a signal peptide. There is apparently only one gene encoding this protein. Towards the C terminus, the protein contains a run of 59 (EP) repeats, which surprisingly is what comprises almost the entire mature EP procyclin molecule present on the surface of trypanosomes in the tsetse gut. Drosophila contains a number of genes encoding proteins, of unknown function, with the same cysteine pattern as tsetseEP; this pattern is not reported for any other protein. Immunoblotting with a monoclonal antibody against (EP) repeats reveals expression in the gut, but not salivary glands, of female and male flies, whether or not fed. Immunoelectron microscopy shows the presence in vesicles in midgut cells and in the lumen of the gut. Attempts to demonstrate lectin activity were thwarted by limited availability of the protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号