首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Dorsal closure, a morphogenetic movement during Drosophila embryogenesis, is controlled by the Drosophila JNK pathway, D-Fos and the phosphatase Puckered (Puc). To identify principles of epithelial closure processes, we studied another cell sheet movement that we term thorax closure, the joining of the parts of the wing imaginal discs which give rise to the adult thorax during metamorphosis. In thorax closure a special row of margin cells express puc and accumulate prominent actin fibres during midline attachment. Genetic data indicate a requirement of D-Fos and the JNK pathway for thorax closure, and a negative regulatory role of Puc. Furthermore, puc expression co-localises with elevated levels of D-Fos, is reduced in a JNK or D-Fos loss-of-function background and is ectopically induced after JNK activation. This suggests that Puc acts downstream of the JNK pathway and D-Fos to mediate a negative feed-back loop. Therefore, the molecular circuitry required for thorax closure is very similar to the one directing dorsal closure in the embryo, even though the tissues are not related. This finding supports the hypothesis that the mechanism controlling dorsal closure has been co-opted for thorax closure in the evolution of insect metamorphosis and may represent a more widely used functional module for tissue closure in other species as well.  相似文献   

2.
Zhang M  Zhang Y  Xu Z 《遗传学报》2010,37(9):605-619
TNFα can trigger different signaling pathways, including the JNK pathway, to regulate various biological functions such as cell death, differentiation and proliferation. The scaffold protein POSH(Plenty of SH3 Domains)has been shown to be an important regulator of the JNK pathway, but whether it is involved in TNF-signaling has not been reported.Although POSH has been implicated to play a role in development in zebrafish,it has not been studied in null mutants and the underlying mechanism of its effects is still not clear.In this study,we provide evidence that the JNK pathway scaffold protein,POSH,is involved in TNF(Eiger)signaling in Drosophila.POSH is likely to act downstream of dTAB2 and upstream of dTAK1 in the TNF-JNK signaling pathway.In addition,we found that POSH is essential during Drosophila embryogenesis,including epidermal dorsal closure,similar to other JNK pathway components such as Slipper,Hemipterous,and Basket. We observed defects in F-actin accumulation and adherens junction formation during dorsal closure in different posh null mutants, suggesting that POSH is required for epidermal cell migration and cell-shape change during epidermal dorsal closure.  相似文献   

3.
4.
5.
6.
吕淑敏  奚耕思 《昆虫知识》2005,42(2):113-118
Jun氨基末端激酶 (JunN terminalkinase ,JNK)是一种重要的细胞信号传递者。它参与了细胞生长、分化、程序性死亡等生理过程 ,而且在调节上皮细胞运动和形态发生等方面也起着重要作用。大量研究证实 ,在果蝇Drosophila的背闭合行为 (dorsalclosure,DC)中 ,DJNK(DrosophilaJNK)的调节是关键。文章就果蝇DC的发生过程以及DJNK信号途径的研究进展作一简要的综述。  相似文献   

7.
The Ral GTPase is activated by RalGDS, which is one of the effector proteins for Ras. Previous studies have suggested that Ral might function to regulate the cytoskeleton; however, its in vivo function is unknown. We have identified a Drosophila homologue of Ral that is widely expressed during embryogenesis and imaginal disc development. Two mutant Drosophila Ral (DRal) proteins, DRal(G20V) and DRal(S25N), were generated and analyzed for nucleotide binding and GTPase activity. The biochemical analyses demonstrated that DRal(G20V) and DRal(S25N) act as constitutively active and dominant negative mutants, respectively. Overexpression of the wild-type DRal did not cause any visible phenotype, whereas DRal(G20V) and DRal(S25N) mutants caused defects in the development of various tissues including the cuticular surface, which is covered by parallel arrays of polarized structures such as hairs and sensory bristles. The dominant negative DRal protein caused defects in the development of hairs and bristles. These phenotypes were genetically suppressed by loss of function mutations of hemipterous and basket, encoding Drosophila Jun NH(2)-terminal kinase kinase (JNKK) and Jun NH(2)-terminal kinase (JNK), respectively. Expression of the constitutively active DRal protein caused defects in the process of dorsal closure during embryogenesis and inhibited the phosphorylation of JNK in cultured S2 cells. These results indicate that DRal regulates developmental cell shape changes through the JNK pathway.  相似文献   

8.
9.
Roles of the JNK signaling pathway in Drosophila morphogenesis.   总被引:1,自引:0,他引:1  
Epithelial cell differentiation and morphogenesis are crucial in many aspects of metazoan development. Recent genetic studies in Drosophila have revealed that the conserved Jun amino-terminal kinase (JNK) signaling pathway regulates epithelial morphogenesis during the process of embryonic dorsal closure and participates in the control of planar polarity in several tissues. Importantly, these studies have linked the JNK pathway to the decapentaplegic and Frizzled pathways in these processes, suggesting a high degree of integrative signaling during epithelial morphogenesis.  相似文献   

10.
Drosophila kayak mutant embryos exhibit defects in dorsal closure, a morphogenetic cell sheet movement during embryogenesis. Here we show that kayak encodes D-Fos, the Drosophila homologue of the mammalian proto-oncogene product, c-Fos. D-Fos is shown to act in a similar manner to Drosophila Jun: in the cells of the leading edge it is required for the expression of the TGFbeta-like Decapentaplegic (Dpp) protein, which is believed to control the cell shape changes that take place during dorsal closure. Defects observed in mutant embryos, and adults with reduced Fos expression, are reminiscent of phenotypes caused by 'loss of function' mutations in the Drosophila JNKK homologue, hemipterous. These results indicate that D-Fos is required downstream of the Drosophila JNK signal transduction pathway, consistent with a role in heterodimerization with D-Jun, to activate downstream targets such as dpp.  相似文献   

11.
12.
Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin-membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development.  相似文献   

13.
Polaski S  Whitney L  Barker BW  Stronach B 《Genetics》2006,174(2):719-733
Mixed lineage kinases (MLKs) function as Jun-N-terminal kinase (JNK) kinase kinases to transduce extracellular signals during development and homeostasis in adults. slipper (slpr), which encodes the Drosophila homolog of mammalian MLKs, has previously been implicated in activation of the JNK pathway during embryonic dorsal epidermal closure. To further define the specific functions of SLPR, we analyzed the phenotypic consequences of slpr loss and gain of function throughout development, using a semiviable maternal-effect allele and wild-type or dominant-negative transgenes. From these analyses we confirm that failure of dorsal closure is the null phenotype in slpr germline clones. In addition, there is a functional maternal contribution, which can suffice for embryogenesis in the zygotic null mutant, but rarely suffices for pupal metamorphosis, revealing later functions for slpr as the maternal contribution is depleted. Zygotic null mutants that eclose as adults display an array of morphological defects, many of which are shared by hep mutant animals, deficient in the JNK kinase (JNKK/MKK7) substrate for SLPR, suggesting that the defects observed in slpr mutants primarily reflect loss of hep-dependent JNK activation. Consistent with this, the maternal slpr contribution is sensitive to the dosage of positive and negative JNK pathway regulators, which attenuate or potentiate SLPR-dependent signaling in development. Although SLPR and TAK1, another JNKKK family member, are differentially used in dorsal closure and TNF/Eiger-stimulated apoptosis, respectively, a Tak1 mutant shows dominant genetic interactions with slpr, suggesting potential redundant or combinatorial functions. Finally, we demonstrate that SLPR overexpression can induce ectopic JNK signaling and that the SLPR protein is enriched at the epithelial cell cortex.  相似文献   

14.
Matrix metalloproteinases (MMPs) are extracellular proteases highly expressed at wound sites. However, the precise function of MMPs during reepithelialization in vivo has been elusive in mammalian models because of the high level of redundancy among the 24 mammalian MMPs. For this reason we used Drosophila melanogaster, whose genome encodes only two MMPs-one secreted type (Mmp1) and one membrane-anchored type (Mmp2)-to study the function and regulation of the secreted class of MMPs in vivo. In the absence of redundancy, we found that the Drosophila secreted MMP, Mmp1, is required in the epidermis to facilitate reepithelialization by remodeling the basement membrane, promoting cell elongation and actin cytoskeletal reorganization, and activating extracellular signal-regulated kinase signaling. In addition, we report that the jun N-terminal kinase (JNK) pathway upregulates Mmp1 expression after wounding, but that Mmp1 is expressed independent of the JNK pathway in unwounded epidermis. When the JNK pathway is ectopically activated to overexpress Mmp1, the rate of healing is accelerated in an Mmp1-dependent manner. A primary function of Mmp1, under the control of the JNK pathway, is to promote basement membrane repair, which in turn may permit cell migration and the restoration of a continuous tissue.  相似文献   

15.
16.
Tensin is an actin-binding protein that is localized in focal adhesions. At focal adhesion sites, tensin participates in the protein complex that establishes transmembrane linkage between the extracellular matrix and cytoskeletal actin filaments. Even though there have been many studies on tensin as an adaptor protein, the role of tensin during development has not yet been clearly elucidated. Thus, this study was designed to dissect the developmental role of tensin by isolating Drosophila tensin mutants and characterizing its role in wing development. The Drosophila tensin loss-of-function mutations resulted in the formation of blisters in the wings, which was due to a defective wing unfolding process. Interestingly, by(1)-the mutant allele of the gene blistery (by)-also showed a blistered wing phenotype, but failed to complement the wing blister phenotype of the Drosophila tensin mutants, and contains Y62N/T163R point mutations in Drosophila tensin coding sequences. These results demonstrate that by encodes Drosophila tensin protein and that the Drosophila tensin mutants are alleles of by. Using a genetic approach, we have demonstrated that tensin interacts with integrin and also with the components of the JNK signaling pathway during wing development; overexpression of by in wing imaginal discs significantly increased JNK activity and induced apoptotic cell death. Collectively, our data suggest that tensin relays signals from the extracellular matrix to the cytoskeleton through interaction with integrin, and through the modulation of the JNK signal transduction pathway during Drosophila wing development.  相似文献   

17.
18.
Although Jun amino-terminal kinase (JNK) is known to mediate a physiological stress signal that leads to cell death, the exact role of the JNK pathway in the mechanisms underlying intrinsic cell death is largely unknown. Here we show through a genetic screen that a mutant of Drosophila melanogaster tumour-necrosis factor receptor-associated factor 1 (DTRAF1) is a dominant suppressor of Reaper-induced cell death. We show that Reaper modulates the JNK pathway through Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), which negatively regulates DTRAF1 by proteasome-mediated degradation. Reduction of JNK signals rescues the Reaper-induced small eye phenotype, and overexpression of DTRAF1 activates the Drosophila ASK1 (apoptosis signal-regulating kinase 1; a mitogen-activated protein kinase kinase kinase) and JNK pathway, thereby inducing cell death. Overexpresson of DIAP1 facilitates degradation of DTRAF1 in a ubiquitin-dependent manner and simultaneously inhibits activation of JNK. Expression of Reaper leads to a loss of DIAP1 inhibition of DTRAF1-mediated JNK activation in Drosophila cells. Taken together, our results indicate that DIAP1 may modulate cell death by regulating JNK activation through a ubiquitin#150;proteasome pathway.  相似文献   

19.
BACKGROUND: The Drosophila Notch protein is a receptor that controls cell fate during embryonic development, particularly in lateral inhibition, a process that acts on groups of cells that share a particular developmental potential to restrict the number of cells that will adopt that cell fate. The process of lateral inhibition is implemented by the nuclear protein Suppressor of Hairless (Su(H)) and is triggered by the ligand Delta. Recent results have shown that the interaction between Delta and Notch triggers the cleavage of the intracellular domain of Notch which then translocates to the nucleus and binds to Su(H). RESULTS: We find that Notch plays a role in the patterning of the dorsal epidermis of the Drosophila embryo and that this function of Notch is independent of Su(H), requires Notch at the plasma membrane and targets the c-Jun N-terminal kinase (JNK) signalling pathway. Notch mutants show high levels of JNK activity and can rescue the effects of lowered JNK signalling resulting from mutations in the hemipterous and basket genes. Two regions of the intracellular domain of Notch are involved: the Cdc10/ankyrin repeats, which downregulate signalling through the JNK pathway, and a region carboxy-terminal to these repeats, which regulates this negative function. CONCLUSIONS: Our results reveal a novel signalling activity of Notch that does not require its cleavage and acts by modulating signalling through the JNK pathway. In the Drosophila embryo, this activity plays an important role in the morphogenetic movements that drive dorsal closure.  相似文献   

20.
We have examined wound healing during regeneration of Drosophila wing imaginal discs fragments by confocal microscopy and assessed the role of components of the JNK pathway in this process. After cutting, columnar and peripodial epithelia cells at the wound edge start to close the wound through formation and contraction of an actin cable. This is followed by a zipping process through filopodial protrusions from both epithelia knitting the wound edges from proximal to distal areas of the disc. Activation of the JNK pathway is involved in such process. puckered (puc) expression is induced in several rows of cells at the edge of the wound, whereas absence of JNK pathway activity brought about by hemipterous, basket, and Dfos mutants impair wound healing. These defects are accompanied by lowered or loss of expression of puc. In support of a role of puc in wound healing, hep mutant phenotypes are rescued by reducing puc function, whereas overexpression of puc inhibits wound healing. Altogether, these results demonstrate a role for the JNK pathway in imaginal disc wound healing, similar to that reported for other healing processes such as embryonic dorsal closure, thoracic closure, and adult epithelial wound healing in Drosophila. Differences with such processes are also highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号