首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dayan FE 《Planta》2006,224(2):339-346
Sorgoleone is the major component of the hydrophobic root exudate of sorghum [Sorghum bicolor (L.) Moench]. The presence of this allelochemical is intrinsically linked to root growth and the development of mature root hairs. However, factors modulating root formation and the biosynthesis of sorgoleone are not well known. Sorgoleone production was independent of early stages of plant development. The optimum temperature for root growth and sorgoleone production was 30°C. Seedling development and sorgoleone levels were greatly reduced at temperatures below 25°C and above 35°C. The level of sorgoleone was also sensitive to light, being reduced by nearly 50% upon exposure to blue light (470 nm) and by 23% with red light (670 nm). Applying mechanical pressure over developing seedlings stimulated root formation but did not affect the biosynthesis of this lipid benzoquinone. Sorgoleone production did not change in seedlings exposed to plant defense elicitors. On the other hand, sorgoleone levels increased in plants treated with a crude extract of velvetleaf (Abutilon theophrasti Medik.) root. This stimulation was not associated with increased osmotic stress, since decreases in water potential (Ψw) by increasing solute concentrations with sorbitol reduces sorgoleone production. Sorgoleone production appears to be constitutively expressed in young developing sorghum plants. Other than with temperature, changes in the environmental factors had either no effect or caused a reduction in sorgoleone levels. However, the stimulation observed with velvetleaf root crude extract suggests that sorghum seedlings may respond to the presence of other plants by releasing more of this allelochemical.  相似文献   

3.
The biosynthetic reaction pathway leading to the natural product, 2-aminoethylphosphonate in Tetrahymena pyriformis has been elucidated. Incubation of [32P]PEP and [14C]PEP with T.pyriformis cellular homogenate fortified with Mg2+ and alanine/pyridoxal phosphate, yielded 2-aminoethylphosphonate as the minor reaction product (2-5% yield) and phosphoglycerate and pyruvate plus orthophosphate as the major products. Inclusion of thiamine pyrophosphate in the reaction mixture increased the yield of 2-aminoethylphosphonate by a factor of 10. Incubation of phosphonoacetaldehyde or phosphonopyruvate in the cellular homogenate also provided 2-aminoethylphosphonate. The cellular homogenate catalyzed the transformation of phosphonoacetaldehyde to 2-aminoethylphosphonate in an ca. 80% yield. However, the maximum yield of 2-aminoethylphosphonic acid obtained by use of phosphonopyruvate was only 15%. The major reaction pathways induced by treatment of phosphonopyruvate with the cellular extract involved its competitive conversion to PEP and pyruvate plus orthophosphate.  相似文献   

4.
Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew that are required for the biosynthesis of parthenolide, using a combination of 454 sequencing of a feverfew glandular trichome cDNA library, co-expression analysis and metabolomics. When parthenolide biosynthesis was reconstituted by transient co-expression of all pathway genes in Nicotiana benthamiana, up to 1.4 μg g−1 parthenolide was produced, mostly present as cysteine and glutathione conjugates. These relatively polar conjugates were highly active against colon cancer cells, with only slightly lower activity than free parthenolide. In addition to these biosynthetic genes, another gene encoding a costunolide and parthenolide 3β-hydroxylase was identified opening up further options to improve the water solubility of parthenolide and therefore its potential as a drug.  相似文献   

5.
6.
Two mutant strains of Aspergillus parasiticus, both deficient in aflatoxin production, were used to elucidate the biosynthetic pathway of this mycotoxin. One of the mutants, A. parasiticus ATCC 24551, was capable of accumulating large amounts of averufin, and the other, A. parasiticus 1-11-105 wh-1, accumulated versicolorin A. The averufin producing mutant efficiently converted 14C-labeled versiconal acetate, versicolorin A, and sterigmatocystin into aflatoxin B1 and G1, indicating that averufin preceded these compounds in the aflatoxin biosynthetic pathway. In the presence of dichlorvos (dimethyl 2,2-dichlorovinyl phosphate), a known inhibitor of aflatoxin biosynthesis, the conversion of versicolorin A and sterigmatocystin was unaffected, but the conversion of versiconal acetate was markedly inhibited. The mutant accumulating versicolorin A incorporated 14C-labeled acetate, averufin, and versiconal acetate into versicolorin A. In the presence of dichlorvos, however, the major conversion product was versiconal acetate. This strongly suggested that dichlorvos inhibited the conversion step of versiconal acetate into versicolorin A. This mutant resumed production of aflatoxin B1 if sterigmatocystin was added to the resting cell cultures, indicating that the mutant was blocked at the enzymatic step catalyzing the conversion of versicolorin A into sterigmatocystin, and as a result was incapable of aflatoxin production. The experimental evidence is thus provided for the involvement and interrelationship of three anthraquinones (averufin, versiconal acetate, and versicolorin A) and a xanthone (sterigmatocystin) in aflatoxin biosynthesis. A pathway for the biosynthesis of aflatoxin B1 is proposed to be: acetate →→→ averufin → versiconal acetate → versicolorin A → sterigmatocystin → aflatoxin B1.  相似文献   

7.
Iron is an important element for many essential processes in living organisms. To acquire iron, the basidiomycete Ustilago maydis synthesizes the iron‐chelating siderophores ferrichrome and ferrichrome A. The chemical structures of these siderophores have been elucidated long time ago but so far only two enzymes involved in their biosynthesis have been described. Sid1, an ornithine monoxygenase, is needed for the biosynthesis of both siderophores, and Sid2, a non‐ribosomal peptide synthetase (NRPS), is involved in ferrichrome generation. In this work we identified four novel enzymes, Fer3, Fer4, Fer5 and Hcs1, involved in ferrichrome A biosynthesis in U. maydis. By HPLC‐MS analysis of siderophore accumulation in culture supernatants of deletion strains, we show that Fer3, an NRPS, Fer4, an enoyl‐coenzyme A (CoA)‐hydratase, and Fer5, an acylase, are required for ferrichrome A production. We demonstrate by conditional expression of the hydroxymethyl glutaryl (HMG)‐CoA synthase Hcs1 in U. maydis that HMG‐CoA is an essential precursor for ferrichrome A. In addition, we heterologously expressed and purified Hcs1, Fer4 and Fer5, and demonstrated the enzymatic activities by in vitro experiments. Thus, we describe the first complete fungal siderophore biosynthetic pathway by functionally characterizing four novel genes responsible for ferrichrome A biosynthesis in U. maydis.  相似文献   

8.
Nocamycins belong to the tetramic acid family natural products and show potent antimicrobial activity. Recently, the biosynthetic gene cluster of nocamycin was identified from the rare actinomycete Saccharothrix syringae and an S-adenosylmethionine (SAM) dependent methyltransferase gene NcmP was found to be located within the gene cluster. In this report, the methyltransferase gene NcmP was disrupted and a new nocamycin intermediate nocamycin E was isolated from the mutant strain. Meanwhile, NcmP was heterologously expressed in Escherichia coli BL21 (DE3) and biochemically characterized as a carboxylate O-methyltransferase in nocamycin biosynthetic pathway. Compared to nocamycin I, nocamycin E showed inferior antibacterial activity, indicating the methyl group is essential to antibacterial activity.  相似文献   

9.
UDP-glycosyltransferase (UGT)-mediated glycosylation is a widespread modification of plant natural products (PNPs), which exhibit a wide range of bioactivities, and are of great pharmaceutical, ecological and agricultural significance. However, functional annotation is available for less than 2% of the family 1 UGTs, which currently has 20,000 members that are known to glycosylate several classes of PNPs. This low percentage illustrates the difficulty of experimental study and accurate prediction of their function. Here, a synthetic biology platform for elucidating the UGT-mediated glycosylation process of PNPs was established, including glycosyltransferases dependent on UDP-glucose and UDP-xylose. This platform is based on reconstructing the specific PNPs biosynthetic pathways in dedicated microbial yeast chassis by the simple method of plug-and-play. Five UGT enzymes were identified as responsible for the biosynthesis of the main glycosylation products of triterpenes in Panax notoginseng, including a novel UDP-xylose dependent glycosyltransferase enzyme for notoginsenoside R1 biosynthesis. Additionally, we constructed a yeast cell factory that yields >1 g/L of ginsenoside compound K. This platform for functional gene identification and strain engineering can serve as the basis for creating alternative sources of important natural products and thereby protecting natural plant resources.  相似文献   

10.
The most important function of carotenoid pigments, especially beta-carotene in higher plants, is to protect organisms against photooxidative damage (G. Britton, in T. W. Goodwin, ed., Plant Pigments--1988, 1988; N. I. Krinsky, in O. Isler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). beta-Carotene also functions as a precursor of vitamin A in mammals (G. A. J. Pitt, in I. Osler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). The enzymes and genes which mediate the biosynthesis of cyclic carotenoids such as beta-carotene are virtually unknown. We have elucidated for the first time the pathway for biosynthesis of these carotenoids at the level of enzyme-catalyzed reactions, using bacterial carotenoid biosynthesis genes. These genes were cloned from a phytopathogenic bacterium, Erwinia uredovora 20D3 (ATCC 19321), in Escherichia coli and located on a 6,918-bp fragment whose nucleotide sequence was determined. Six open reading frames were found and designated the crtE, crtX, crtY, crtI, crtB, and crtZ genes in reference to the carotenoid biosynthesis genes of a photosynthetic bacterium, Rhodobacter capsulatus; only crtZ had the opposite orientation from the others. The carotenoid biosynthetic pathway in Erwinia uredovora was clarified by analyzing carotenoids accumulated in E. coli transformants in which some of these six genes were expressed, as follows: geranylgeranyl PPiCrtB----prephytoene PPiCrtE----phytoeneCrtI---- lycopeneCrtY----beta-caroteneCrtZ----zeaxanthinCrtX--- -zeaxanthin-beta- diglucoside. The carotenoids in this pathway appear to be close to those in higher plants rather than to those in bacteria. Also significant is that only one gene product (CrtI) for the conversion of phytoene to lycopene is required, a conversion in which four sequential desaturations should occur via the intermediates phytofluene, zeta-carotene, and neurosporene.  相似文献   

11.
ABSTRACT

Abscisic acid (ABA) is one of the plant hormones that regulates physiological functions in various organisms, including plants, sponges, and humans. The biosynthetic machinery in plants is firmly established, while that in fungi is still unclear. Here, we elucidated the functions of the four biosynthetic genes, bcABA1-bcABA4, found in Botrytis cinerea by performing biotransformation experiments and in vitro enzymatic reactions with putative biosynthetic intermediates. The first-committed step is the cyclization of farnesyl diphosphate to give α-ionylideneethane catalyzed by a novel sesquiterpene synthase, BcABA3, which exhibits low amino acid sequence identities with sesquiterpene synthases. Subsequently, two cytochrome P450s, BcABA1 and BcABA2, mediate oxidative modifications of the cyclized product to afford 1?,4?-trans-dihydroxy-α-ionylideneacetic acid, which undergoes alcohol oxidation to furnish ABA. Our results demonstrated that production of ABA does not depend on the nucleotide sequence of bcABA genes. The present study set the stage to investigate the role of ABA in infections.  相似文献   

12.
The pseudopterosins are a family of diterpene glycosides isolated from the gorgonian coral Pseudopterogorgia elisabethae. These metabolites exhibit potent anti-inflammatory activity, and this review describes our efforts to elucidate their biosynthetic origin. A radioactivity-guided isolation was used to identify the terpene cyclase product. In addition, a detailed NMR-guided search for potential biosynthetic intermediates identified metabolites which were tested by incubating 3H-labeled analogues with a cell-free extract of the coral. All labeled metabolites were generated biosynthetically, and radiochemical purity was established by a combination of HPLC purification and derivatization. In summary, pseudopterosins are produced by a cyclization of geranylgeranyl diphosphate to elisabethatriene, aromatization to erogorgiaene, two successive oxidations to 7,8-dihydroxyerogorgiaene and a glycosylation to afford a seco-pseudopterosin as a key intermediate. A dehydrogenation leads to amphilectosins which undergo ring closures to yield the pseudopterosins.  相似文献   

13.
Biosynthetic thiolases catalyze the biological Claisen condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in many biosynthetic pathways including those which generate cholesterol, steroid hormones and ketone body energy storage molecules. High resolution crystal structures of the tetrameric biosynthetic thiolase from Zoogloea ramigera were determined (i) in the absence of active site ligands, (ii) in the presence of CoA, and (iii) from protein crystals which were flash frozen after a short soak with acetyl-CoA, the enzyme's substrate in the biosynthetic reaction. In the latter structure, a reaction intermediate was trapped: the enzyme was found to be acetylated at Cys89 and a molecule of acetyl-CoA was bound in the active site pocket. A comparison of the three new structures and the two previously published thiolase structures reveals that small adjustments in the conformation of the acetylated Cys89 side-chain allow CoA and acetyl-CoA to adopt identical modes of binding. The proximity of the acetyl moiety of acetyl-CoA to the sulfur atom of Cys378 supports the hypothesis that Cys378 is important for proton exchange in both steps of the reaction. The thioester oxygen atom of the acetylated enzyme points into an oxyanion hole formed by the nitrogen atoms of Cys89 and Gly380, thus facilitating the condensation reaction. The interaction between the thioester oxygen atom of acetyl-CoA and His348 assists the condensation step of catalysis by stabilizing a negative charge on the thioester oxygen atom. Our structure of acetyl-CoA bound to thiolase also highlights the importance in catalysis of a hydrogen bonding network between Cys89 and Cys378, which includes the thioester oxygen atom of acetyl-CoA, and extends from the catalytic site through the enzyme to the opposite molecular surface. This hydrogen bonding network is different in yeast degradative thiolase, indicating that the catalytic properties of each enzyme may be modulated by differences in their hydrogen bonding networks.  相似文献   

14.
15.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   

16.
The biosynthesis of the diterpene 8alpha-acetoxy-13alpha-hydroxy-5-oxo-13-epi- neoverrucosane in the arctic liverwort Fossombronia alaskana was studied by incorporation experiments using [1-(13)C]- and [U-(13)C(6)]glucose as precursors. The (13)C-labeling patterns of acetyl-CoA, pyruvate, and phosphoenolpyruvate in intermediary metabolism were reconstructed from the (13)C NMR data of biosynthetic amino acids (leucine, alanine, phenylalanine) and were used to predict hypothetical labeling patterns for isopentenyl pyrophosphate formed via the mevalonate pathway and the deoxyxylulose pathway. The labeling patterns observed for the neoverrucosane diterpene were consistent with the intermediate formation of geranyllinaloyl pyrophosphate assembled from dimethylallyl pyrophosphate and three molecules of isopentenyl pyrophosphate generated predominantly or entirely via 1-deoxyxylulose 5-phosphate. The experimental data can be integrated into a detailed biosynthetic scheme involving a 1,5-hydride shift. The postulated involvement of the 1,5-hydride shift was confirmed by an incorporation experiment with [6,6-(2)H(2)]glucose.  相似文献   

17.
A simple, optical density-based assay for inhibitors of the mevalonate-dependent pathway for isoprenoid biosynthesis was developed. The assay uses pathway-sensitized Staphylococcus aureus strains and is fully compatible with high-density screening in a 1536-well format. S. aureus strains were constructed in which genes required for mevalonate-dependent isopentenyl pyrophosphate (IPP) synthesis were regulated by an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible promoter. Inhibitors of the target enzymes displayed greater antibacterial potency in media containing low concentrations of IPTG, and therefore less induction of mevalonate pathway genes, than in media with high IPTG conditions. This differential growth phenotype was exploited to bias the cell-based screening hits toward specific inhibitors of mevalonate-dependent IPP biosynthesis. Screens were run against strains engineered for regulation of the enzymes HMG-CoA synthase (MvaS) and mevalonate kinase (mvaK1), mevalonate diphosphate decarboxylase (mvaD), and phosphomevalonate kinase (mvaK2). The latter three enzymes are regulated as an operon. These assays resulted in the discovery of potent antibacterial hits that were progressed to an active hit-to-lead program. The example presented here demonstrates that a cell sensitization strategy can be successfully applied to a 1.3-million compound high-throughput screen in a high-density 1536-well format.  相似文献   

18.
19.
20.
We have identified, cloned and sequenced an 8422 base pair fragment of Acetobacter xylinum genomic DNA containing part of the acetan biosynthetic gene cluster. Computer analysis of the nucleotide sequence data generated revealed the presence of six open reading frames. Comparison of the translated sequences of putative genes to the amino acid sequences of genes from other organisms was used to assign functions to the aceA, aceC and manB genes. These genes were predicted to encode a UDP-glycosyl transferase, a GDP-mannosyl transferase and a phosphomannose isomerase/GDP-mannose pyrophosphorylase, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号