首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

2.
Continuous endocytosis of 125I-asialo-orosomucoid (ASOR) mediated by the galactosyl receptor in rat hepatocytes is a cyclic process. 125I-ASOR-receptor complexes are internalized, processed, and the ligand is degraded while the receptor is returned to the cell surface for reutilization. Since a true cycle has a thermodynamic requirement for the input of external energy, we examined the effects of changes in intracellular ATP levels on the function of the receptor cycle. Hepatocytes were depleted of ATP to various extents prior to endocytosis by incubating cells at 15 degrees C in the presence of 2 mM NaF and 0-20 mM NaN3. A luciferase-luciferin bioluminescence assay was used to quantitate the amount of cellular ATP. ATP-depleted cells were allowed to bind 125I-ASOR at 0 degrees C, washed through discontinuous Percoll gradients, and only viable cells were isolated and incubated at 37 degrees C to initiate a synchronous single round of endocytosis. The extent of internalization of this surface-bound 125I-ASOR was unaffected by an ATP depletion to less than 1% of the control level. The rate of internalization of surface-bound ligand was unaffected until the ATP levels decreased to 30% or less; at greater than 98% ATP depletion the initial rate decreased by a maximum of 55% and the kinetics became biphasic. In contrast, continuous endocytosis in the presence of excess ASOR was inhibited by only a 25% decline in cellular ATP content and demonstrated a very sharp threshold response to changing ATP levels. Continuous endocytosis, which requires receptor recycling, was completely inhibited when the total cellular ATP level decreased by only 40%. We conclude that the internalization phase of endocytosis is not dependent on ATP but that the processing and/or externalization phases of the complete receptor cycle are either directly or indirectly dependent on ATP and very sensitive to changes in cellular ATP content.  相似文献   

3.
We recently reported that the dissociation of internalized receptor-125I-asialo-orosomucoid (ASOR) complexes by isolated hepatocytes is a biphasic process; most complexes dissociate rapidly but 25-50% dissociate slowly (Oka, J. A., and Weigel, P. H. J. Biol. Chem. 258, 10253-10262). Cells were allowed to endocytose a pulse of surface-bound 125I-ASOR, and were washed and then incubated at 37 degrees C in the presence or absence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). Without EGTA, very little intact ASOR appeared in the medium. With EGTA present, a large amount of intracellular ligand appeared undegraded in the medium in a time-dependent manner. N-Acetylgalactosamine, but not ASOR, in the medium also caused release of intact 125I-ASOR. Within 15 min, more than 50% and by completion at least 80% of the internalized ligand in the slow dissociation compartment was released into the medium. If cells containing internalized ligand were incubated at 37 degrees C for increasing times before the addition of EGTA, then progressively less ligand accumulated in the medium. Experiments at 18 degrees C, a temperature at which neither degradation nor slow dissociation occurred, demonstrated that in the presence of EGTA the intracellular free 125I-ASOR pool did not change. The amount of receptor-bound ligand in the slowly dissociating pool decreased and the amount of intact ligand in the medium increased by essentially equal amounts. The temperature dependence for the return of internal 125I-ASOR to the cell surface was similar to that for endocytosis, with a cut-off temperature of about 12 degrees C. We conclude that a normal part of the endocytic process involves the return of receptor-ligand complexes to the cell surface from an internal slowly dissociating pool. This might reflect either an obligatory step or a reversible statistically random step in the endocytic/recycling pathway.  相似文献   

4.
Receptor-mediated uptake and degradation of 125I-asialoorosomucoid (ASOR) in human hepatoma HepG2 cells is inhibited by the lysosomotropic amines chloroquine and primaquine. In the absence of added ligand at 37 degrees C, these amines induce a rapid (t1/2 5.5-6 min) and reversible loss of cell surface 125I-ASOR binding sites as well as a rapid decrease in 125I-ASOR uptake and degradation. There is no effect of these amines on the binding of 125I-ASOR to the cell surface at 4 degrees C or on the rate of internalization of prebound 125I-ASOR. The loss of 125I-ASOR surface binding at 37 degrees C is not attributable to altered affinity of ligand-receptor binding. In the presence of added ligand at 37 degrees C, there is a more rapid (t1/2 2.5-3 min) loss of hepatoma cell surface receptors. In addition, the amines inhibit the rapid return of the internalized receptor to the cell surface. We examined the nature of this loss of 125I-ASOR surface binding sites by following the fate of receptor molecules after biosynthetic labeling and after cell surface iodination. At 37 degrees C, chloroquine and primaquine induce a loss of asialoglycoprotein receptor molecules from the hepatoma cell surface to an internal pool.  相似文献   

5.
In isolated rat hepatocytes fluid phase endocytosis, determined by the uptake of the fluorescent dye lucifer yellow (LY), and receptor mediated endocytosis, determined using a ligand for the asialoglycoprotein receptor (asialo-orosomucoid; ASOR), are different pathways based on their different sensitivities to hyperosmolarity induced by sucrose (Oka and Weigel, J. Cell. Biol. 105, 311a, 1987). LY uptake was unaffected by 0.2 M sucrose at all temperatures tested between 12 degrees and 37 degrees C whereas the uptake of 125I-ASOR was completely inhibited at any temperature. Since the two probes are taken up by different pathways it was possible to determine independently the activation energies (Ea) for the fluid phase versus the receptor mediated coated pit endocytic process. The Ea was 26.4 +/- 3.5 and 25.8 +/- 1.9 kcal/mole for, respectively, receptor mediated and fluid phase endocytosis. These values are not significantly different, and we conclude that the fluid phase and receptor mediated pathways are thermodynamically equivalent even though they are independent.  相似文献   

6.
Asialoorosomucoid (ASOR) is internalized and degraded by HepG2 cells after binding to the asialoglycoprotein (ASGP) receptor, internalization through the coated pit/coated vesicle pathway, and trafficking to lysosomes. Primaquine, an 8-aminoquinoline antimalarial compound, inhibits ASOR degradation at concentrations greater than 0.2 mM by neutralizing intracellular acid compartments. This leads to alterations in surface receptor number, receptor-ligand dissociation, and receptor recycling. We have investigated the effects of primaquine on 125I-ASOR uptake and degradation as a function of primaquine concentration and duration of exposure. Concentrations below those required for neutralization of acidic compartments block 125I-ASOR degradation in HepG2 cells and lead to intracellular ligand accumulation. This effect is maximal at 80 microM primaquine. The intracellular 125I-ASOR is undegraded, dissociated from the ASGP receptor, and contained within vesicular compartments distinct from lysosomes, plasma membrane, or endosomes. In addition, the effect of 80 microM primaquine on 125I-ASOR degradation is very slowly reversible (greater than 6 h), in contrast to primaquine's rapidly reversible effect on receptor recycling and ligand uptake (10 min). Furthermore, the effect is ligand-specific. 125I-asialofetuin, another ASGP receptor ligand, is internalized and degraded in lysosomes at normal rates in HepG2 cells exposed to 80 microM primaquine. These findings indicate that primaquine has multiple effects on the uptake and degradation of ligand occurring in the endosome-lysosome pathway. These effects of primaquine differ in their concentration-dependence, site of action, reversibility, and ligand selectivity.  相似文献   

7.
The ability of rat hepatocytes to degrade internalized surface-bound 125I-asialoorosomucoid (ASOR) was determined by measuring the appearance of acid-soluble radioactivity at 37 degrees C. The degradation kinetics were biphasic in cells previously equilibrated at 37 degrees C for 1 h or cultured for 24 h. Degradation began immediately and was linear for at least 20 min after which the rate increased to a steady state value 3-4 times greater than the initial rate. We previously showed that hepatocytes have two functionally distinct populations of galactosyl receptors that mediate ligand dissociation by two kinetically different pathways (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). The activity of one receptor population, designated State 2 galactosyl receptors, can be reversibly modulated by incubating cells between 22 and 37 degrees C and is not expressed on the surface of freshly isolated cells. When 125I-ASOR was prebound to freshly isolated cells at 4 degrees C and degradation was assessed subsequently at 37 degrees C, the kinetics were monophasic, not biphasic. Degradation of the surface-bound 125I-ASOR began immediately and was greater than 90% complete by 6 h. Freshly isolated cells were incubated at temperatures between 22 and 37 degrees C, chilled to 4 degrees C, allowed to pre-bind 125I-ASOR, and then incubated at 37 degrees C. As the State 2 galactosyl receptor population increased, the kinetics of degradation became progressively more biphasic and the rate of the delayed degradation process increased. This effect could be reversed in cells in culture or in suspension by down-modulating surface receptor activity at temperatures below 37 degrees C; only the degradation process appearing after a 20-min lag was affected. Degradation in both pathways is an apparent first order process with identical rate constants (kappa = 0.006 min-1, t1/2 = 116 min). We conclude that there are two separate pathways by which asialoglycoproteins are degraded. The major "classic" pathway mediated by State 2 galactosyl receptors occurs after a 20-min lag and the minor pathway mediated by State 1 galactosyl receptors begins immediately with no detectable lag.  相似文献   

8.
We studied the effect of hyperosmotic inhibition of the clathrin coated pit cycle on the monensin- and chloroquine-dependent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes. Cells treated for 60 min without ligand at 37 degrees C with 25 microM monensin or 300 microM chloroquine in normal medium (osmolality congruent to 275 mmol/kg) bound 40-60% less 125I-asialo-orosomucoid (ASOR) at 4 degrees C than untreated cells. Cells exposed to monensin or chloroquine retained progressively more surface Gal receptor activity, however, when the osmolality of the medium was increased above 400 mmol/kg (using sucrose as osmolite) 10 min prior to and during drug treatment. Cells pretreated for 10 min with hyperosmolal media (600 mmol/kg) alone internalized less than or equal to 10% of surface-bound 125I-ASOR. Thus, the ligand-independent loss of surface Gal receptor activity on monensin- and chloroquine-treated hepatocytes requires internalization of constitutively recycling receptors via a coated pit pathway.  相似文献   

9.
In this study, we characterized and compared the ligand-independent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes treated with monensin, chloroquine, microtubule depolymerizing agents, or NaN3 and NaF at 37 degrees C. Freshly isolated hepatocytes exhibit predominately one subset of surface Gal receptors, termed State 1 receptors (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). During equilibration at 37 degrees C, these cells also express a second subset of Gal receptors at the surface, termed State 2 receptors, and routinely double their total surface Gal receptor activity. Following equilibration at 37 degrees C and then inhibitor treatment, hepatocytes bound 40-60% less 125I-asialoorosomucoid (ASOR) at 4 degrees C than did untreated cells. Treated cells maintained a basal nonmodulated level of surface receptor activity regardless of temperature, perturbant concentration, or incubation time. Loss of surface Gal receptor activity on cells treated with multiple inhibitors simultaneously or sequentially was not additive. Thus, all treatments affected the same subpopulation of surface Gal receptors. None of these inhibitors decreased surface State 1 Gal receptor activity, but all prevented the normal appearance of State 2 Gal receptors on freshly isolated cells during incubation at 37 degrees C. The endocytic capability of residual surface State 1 Gal receptors on inhibitor-treated cells varied depending on the inhibitor. Hepatocytes treated first at 24 degrees C or with colchicine at 37 degrees C internalized greater than 85% of surface-bound 125I-ASOR. In contrast, monensin- or chloroquine-treated cells internalized approximately 50% of surface-bound 125I-ASOR. Azide-treated cells internalized less than 20% of surface-bound 125I-ASOR. We conclude that only surface State 2 Gal receptor activity is sensitive to these various perturbants. State 1 Gal receptor activity is not modulated. These data are consistent with the conclusion that only State 2 Gal receptors constitutively recycle.  相似文献   

10.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

11.
We have shown that degradation of asialo-orosomucoid (ASOR) in isolated rat hepatocytes occurs by two different intracellular pathways [Clarke, Oka & Weigel (1987) J. Biol. Chem. 262, 17384-17392] mediated by two subpopulations of cell surface galactosyl (Gal) receptors, designated State 1 or State 2 receptors. In the present study, several inhibitors were tested for their effects on ligand degradation by the State 1 or State 2 pathway. Leupeptin, monensin and chloroquine completely inhibited degradation of 125I-labelled ASOR in both pathways. Dose-response studies showed, however, that the State 2 pathway was more sensitive to leupeptin or monensin than the State 1 pathway. No differences were observed with chloroquine. For example, the onset of inhibition in the State 2 and State 1 pathways occurred at about 0.05 and 0.3 microM-leupeptin respectively, a 6-fold difference. At 3.5 microM-monensin, 125I-ASOR degradation in the State 2 pathway was completely blocked, whereas degradation in the State 1 pathway was essentially unaffected. Colchicine was observed to give the largest differential sensitivity between the two pathways. The State 2 degradation pathway was about 30-fold more sensitive to colchicine than the State 1 pathway. Lumicolchicine had no affect. The onset of inhibition of the rate of 125I-ASOR degradation in the State 2 and State 1 pathways occurred at approximately 0.1 and 3.0 microM-colchicine respectively. At very high concentrations (greater than 0.1 mM), the State 1 pathway could be completely inhibited. We conclude that intracellular 125I-ASOR processing or delivery to degradative compartments in both the State 1 and State 2 Gal receptor pathways requires low pH. Ligand delivery to the degradative compartment does not require microtubules in the State 1 pathway, consistent with the very rapid onset of degradation in this pathway. The State 2 degradation pathway does require microtubules.  相似文献   

12.
The binding of [125I]gastrin releasing peptide ([125I]GRP) to Swiss 3T3 cells at 37 degrees C increases rapidly, reaching a maximum after 30 min and decreasing afterwards. The decrease in cell-associated radioactivity at this temperature is accompanied by extensive degradation of the labelled peptide. At 4 degrees C equilibrium binding is achieved after 6 h and [125I]GRP degradation is markedly inhibited. Extraction of surface-bound ligand at low pH demonstrates that the iodinated peptide is internalized within minutes after addition to 3T3 cells at 37 degrees C. The rate of internalization is strikingly temperature-dependent and is virtually abolished at 4 degrees C. In addition, lysomotropic agents including chloroquine increase the cell-associated radioactivity in cells incubated with [125I]GRP. The binding of [125I]GRP to Swiss 3T3 cells was not affected by pretreatment for up to 24 h with either GRP or bombesin at mitogenic concentrations. Furthermore, pretreatment with GRP did not reduce the affinity labelling of a Mr 75,000-85,000 surface protein recently identified as a putative receptor for bombesin-like peptides. These results demonstrate that while peptides of the bombesin family are rapidly internalized and degraded by Swiss 3T3 cells, the cell surface receptors for these molecules are not down-regulated.  相似文献   

13.
The specific binding of various concentrations of 125I-labeled nerve growth factor (NGF) to PC12 cells at 37 degrees C reached maxima after 90 min and then declined to 25% of maximal binding after 10 h. Decreased binding was accompanied by degradation of 125I-NGF and the appearance of acid-soluble biologically inactive 125I (mainly 125I-monoiodotyrosine) in the medium as well as a decrease in the number of surface NGF receptors. The time-dependent decrease in binding and the degradation of 125I-NGF were inhibited by low temperature and the lysosomotropic agent chloroquine while degradation was inhibited by metabolic energy inhibitors in the absence of glucose. Chloroquine also produced an increase in the accumulation of 125I-NGF which was not readily removed from the cells. These data suggest that 125I-NGF bound to PC12 cells is efficiently internalized by receptor-mediated endocytosis and degraded by the lysosomes. It appears from other data that this process does not produce the intracellular signals regulating neurite outgrowth.  相似文献   

14.
The peptide somatostatin (SRIF) is secreted by delta cells of the endocrine pancreas and inhibits the secretion of insulin from pancreatic beta cells. We have previously shown that [125I-Tyr11]SRIF binds to specific, high affinity receptors on RINm5F insulinoma cells and that these receptors mediate the action of SRIF to inhibit insulin release. In the present study we investigated the processing of receptor-bound [125I-Tyr11]SRIF in this clonal cell line. Surface-bound and internalized peptides were distinguished by the ability of an acid/salt solution (0.2 M acetic acid, 0.5 M NaCl, pH 2.5) to dissociate only exposed ligand-receptor complexes. Surprisingly, greater than 80% of saturably bound [125I-Tyr11]SRIF was removed by this acid wash independent of the time or temperature of the binding incubation. In contrast, the processing of receptor-bound [125I]EGF (epidermal growth factor) in RINm5F cells was markedly temperature-dependent. Although over 90% of saturably bound [125I]EGF was dissociated by acid after a 4 degrees C binding incubation, less than 10% was removed by acid treatment after 37 degrees C binding. The radioactivity released upon dissociation of receptor-bound [125I-Tyr11]SRIF was analyzed by high performance liquid chromatography and shown to consist of a mixture of intact peptide (40%) and [125I]tyrosine (60%). However, neither the rate of [125I-Tyr11]SRIF dissociation nor its degradation were affected by NH4Cl, methylamine, or leupeptin at concentrations which inhibited the lysosomal degradation of [125I] EGF. Of 11 other protease inhibitors tested, only the metalloendoprotease inhibitor, phosphoramidon, substantially reduced the degradation of receptor-bound [125I-Tyr11]SRIF. These data indicate that, unlike [125I] EGF, receptor-bound [125I-Tyr11]SRIF is not rapidly internalized by RINm5F cells and is degraded by a nonlysosomal process which may involve a metalloendoprotease.  相似文献   

15.
Comparative studies were made of the metabolism of plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) by cultured normal human fibroblasts. On a molar basis, the surface binding of (125)I-HDL was only slightly less than that of (125)I-LDL, whereas the rates of internalization and degradation of (125)I-HDL were very low relative to those of (125)I-LDL. The relationships of internalization and degradation to binding suggested the presence of a saturable uptake mechanism for LDL functionally related to high-affinity binding. This was confirmed by the finding that the total uptake of (125)I-LDL (internalized plus degraded) at 5 micro g LDL protein/ml was 100-fold greater than that attributable to fluid or bulk pinocytosis, quantified with [(14)C]sucrose, and 10-fold greater than that attributable to the sum of fluid endocytosis and adsorptive endocytosis. In contrast, (125)I-HDL uptake could be almost completely accounted for by the uptake of medium during pinocytosis and by invagination of surface membrane (bearing bound lipoprotein) during pinocytosis. These findings imply that, at most, only a small fraction of bound HDL binds to the high-affinity LDL receptor and/or that HDL binding there is internalized very slowly. The rate of (125)I-HDL degradation by cultured fibroblasts (per unit cell mass) exceeded an estimate of the turnover rate of HDL in vivo, suggesting that peripheral tissues may contribute to HDL catabolism. In accordance with their differing rates of uptake and cholesterol content, LDL increased the cholesterol content of fibroblasts and selectively inhibited sterol biosynthesis, whereas HDL had neither effect.  相似文献   

16.
Binding and endocytosis of glycoproteins by isolated chicken hepatocytes   总被引:2,自引:0,他引:2  
The binding and endocytosis of glycoproteins containing different terminal sugars by isolated chicken hepatocytes were studied. At 2 degrees C, where there is no endocytosis, the hepatocyte surface bound 30 800 GlcNAc44-AI-BSA molecules [a bovine serum albumin (BSA) derivative which contains 44 residues of N-octylglucosamine (GlcNAc)] [Lee, Y.C., Stowell, C.P., & Krantz, M.J. (1976) Biochemistry 15, 3956-3963] and 32 900 asialoagalactoorosomucoid (AGOR) molecules per cell with estimated dissociation constants of 5 X 10(-10) and 4 X 10(-9) M, respectively. In the presence of digitonin or Triton X-100, each hepatocyte bound 7-18 times more ligand than in the absence of these detergents. Bound 125I-AGOR could be dissociated from the cell surface by 5.5 X 10(-5) M GlcNAc44-AI-BSA with a t 1/2 of 30 min, while GlcNAc (10 mM) or ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (4 mM) could dissociate over 98% of the surface-bound radioactivity within 10 min. Several neoglycoproteins inhibited the binding of 125I-AGOR, requiring for 50% inhibition 2.1 X 10(-9), 4.0 X 10(-7), 1.6 X 10(-6), and 2 X 10(-6) M for GlcNAc44-, Glc37-, Man43-, and L-Fuc28-AI-BSA, respectively. The bound AGOR and neoglycoproteins were internalized and degraded at 37 degrees C. [125I]Iodide was the only labeled degradation product found. When the hepatocytes were exposed to 250 nM AGOR at 37 degrees C, ca. 100 000 molecules of AGOR were associated with the cell surface at the steady state of endocytosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have examined the effect of ethanol administration on receptor-mediated endocytosis of asialo-orosomucoid by isolated hepatocytes. Significantly less ligand was bound, internalized, and degraded by hepatocytes isolated from rats fed an ethanol diet for 5-7 weeks than by cells isolated from chow-fed or pair-fed controls. Reduced binding was shown to be primarily due to a decreased number of cell surface receptors rather than to a lowered affinity of the receptor for its ligand. This reduction in cell surface receptors resulted in a marked inhibition of internalization and degradation of ligand by hepatocytes from the ethanol-fed rats. In addition, a defect in the initial stages of receptor-ligand internalization was also indicated, since less surface-bound ligand was internalized and subsequently degraded in cells from the ethanol-treated animals as compared to controls. Rates of internalization and degradation of internalized ligand were, however, similar for all three groups, suggesting that neither degradation per se nor rate of delivery of internalized ligand to the lysosomes was affected by ethanol feeding. Receptor recycling was impaired in ethanol-fed rats, as indicated by a decrease in the binding site number after stimulation of endocytosis for 120 min when compared to initial binding capacity. Receptor recycling was not impaired in hepatocytes from control animals. These results indicate that chronic ethanol feeding impairs the process of receptor-mediated endocytosis by the liver; the major cause of this impairment appears to be due to a decreased number of cell surface asialoglycoprotein receptors in the ethanol-fed animals, along with a decreased ability of these cells to internalize all of the surface-bound ligand.  相似文献   

18.
《The Journal of cell biology》1995,129(5):1403-1410
Thrombospondin-1 (TSP1) has potent biological effects on vasculature smooth muscle cells (SMCs) and endothelial cells. The regulation of extracellular accumulation of TSP1 is mediated by a previously obscure process of endocytosis which leads to its lysosomal degradation. Since members of the low density lipoprotein receptor (LDLR) family have been found to mediate endocytosis which leads to degradation of a diverse array of ligands, we evaluated their possible role in the uptake and degradation of TSP1 by vascular SMCs, endothelial-cells and fibroblasts. 125I-TSP1 was found to be internalized and degraded lysosomally by all these cell types. Both the internalization and degradation of 125I-TSP1 could be inhibited by a specific antagonist of the LDLR family, the 39-kD receptor-associated protein (RAP). Antibodies to the LDLR-related protein (LRP) completely blocked the uptake and degradation of 125I-TSP1 in SMCs and fibroblasts but not endothelial cells. Solid-phase binding assays confirmed that LRP bound to TSP1 and that the interaction was of high affinity (Kd = 5 nM). Neither RAP nor LRP antibodies inhibited the binding of 125I-TSP1 to surfaces of SMCs. However, cell surface binding, as well as, endocytosis and degradation could be blocked by heparin or by pre- treatment of the cells with either heparitinase, chondroitinase or beta- D-xyloside. The data indicates that cell surface proteoglycans are involved in the LRP-mediated clearance of TSP1. A model for the clearance of TSP1 by these cells is that TSP1 bound to proteoglycans is presented to LRP for endocytosis. In endothelial cells, however, the internalization of TSP1 was not mediated by LRP but since RAP inhibited TSP1 uptake and degradation, we postulate that another member of the LDLR family is likely to be involved.  相似文献   

19.
The asialoglycoprotein receptor has been identified on a continuous human hepatoma cell line, HepG2. This receptor requires Ca2+ for ligand binding and is specific for asialoglycoprotein. There are approximately 150,000 ligand molecules bound/cell at 4 degrees C. These receptors represent a homogeneous population of high affinity binding sites with Kd = 7 X 10(-9) M. From the rate of 125I-ASOR binding at 4 degrees C, kon was 0.95 X 10(6) M-1 min-1. Uptake of 125I-ASOR at 37 degrees C was approximately 0.02 pmol/min/10(6) cells.  相似文献   

20.
The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells (KD of 42.0 +/- 3.8 pM and 70,526 +/- 6121 binding sites/cell for the high-affinity sites, KD of 0.933 +/- 0.27 nM and 630,252 +/- 172,459 sites/cell for low-affinity binding sites). The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely 125I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound 125I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At 37 degrees C, 30% of the cell-associated 125I-bFGF became resistant to the acidic wash after 90 min, suggesting that this fraction of bound 125I-bFGF was internalized. At this temperature, degradation of the internalized ligand was followed after 1 h by the appearance of three major bands of 15,000, 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号