首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monoclonal antibodies have served to characterize neurotactin, a novel Drosophila protein for which a role in cell adhesion is postulated. Neurotactin is a transmembrane protein, as indicated by epitope mapping and amino acid sequence. Similarly to other cell adhesion molecules, neurotactin accumulates in parts of the membrane where neurotactin-expressing cells contact each other. The protein is only detected during cell proliferation and differentiation, and it is found mainly in neural tissue and also in mesoderm and imaginal discs. Neurotactin has a large cytoplasmic domain rich in charged residues and an extracellular domain similar to cholinesterase that lacks the active site serine required for esterase activity. The extracellular domain also contains three copies of the tripeptide leucine-arginine-glutamate, a motif that forms the primary sequence of the adhesive site of vertebrate s-laminin.  相似文献   

2.
Neurotactin (NRT), a member of the cholinesterase-homologous protein family, is a heterophilic cell adhesion molecule that is required for proper axon guidance during Drosophila development. In this study, we identify amalgam (AMA), a member of the immunoglobulin superfamily, as a ligand for the NRT receptor. Using transfected Schneider 2 cells and embryonic primary cultures, we demonstrate that AMA is a secreted protein. Furthermore, AMA is necessary for NRT-expressing cells both to aggregate with themselves and to associate with embryonic primary culture cells. Aggregation assays performed with truncated NRT molecules reveal that the integrity of the cholinesterase-like extracellular domain was not required either for AMA binding or for adhesion, with only amino acids 347-482 of the extracellular domain being necessary for both activities. Moreover, the NRT cytoplasmic domain is required for NRT-mediated adhesion, although not for AMA binding. Using an ama-deficient stock, we find that ama function is not essential for viability. Pupae deficient for ama do exhibit defasciculation defects of the ocellar nerves similar to those found in nrt mutants.  相似文献   

3.
Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells.  相似文献   

4.
Drosophila neurotactin is a transmembrane glycoprotein with an apparent molecular mass of 135 x 10(3). Neurotactin is regionally expressed at the cellular blastoderm stage; later in embryogenesis the expression of the protein becomes restricted to cells of the peripheral and central nervous system. Immunocytochemical localization shows neurotactin protein at points of cell-cell contact. Using the anti-neurotactin monoclonal antibody BP-106, a neurotactin cDNA was isolated that encodes a 846 residue polypeptide. The chromosomal location of the neurotactin gene is 73C. The extracellular domain at the carboxyterminal end of the neurotactin protein shows a strong structural and sequence homology to serine esterases without retaining the amino acids forming the active center. Neurotactin therefore belongs to a growing group of proteins including Drosophila glutactin and thyroglobulins that are known to share this serine esterase protein domain motif without retaining the active center of the enzyme.  相似文献   

5.
Neuron-glia cell adhesion molecule (Ng-CAM) mediates cell adhesion between neurons homophilically and between neurons and glia heterophilically; it also promotes neurite outgrowth. In the chick brain, Ng-CAM is detected as glycoproteins of 190 and 210 kD (Ng- CAM200) with posttranslational cleavage products of 135 kD (F135, which contains most of the extracellular region) and 80 kD (F80, which includes the transmembrane and the cytoplasmic domains). To examine the functions of each of these components, we have expressed Ng-CAM200, F135, and F80 in murine L cells, and F135 and F80 as GST fusion proteins in the pGEX vector in bacteria. Appropriately transfected L cells expressed each of these proteins on their surfaces; F135 was also found in the media of cells transfected with Ng-CAM200 and F135. In addition to binding homophilically, cells transfected with Ng-CAM200 and F135 bound heterophilically to untransfected L cells, suggesting that there is a ligand for Ng-CAM on fibroblasts that may be related to the glial ligand. Detailed studies using the transfected cells and the fusion proteins indicated that both the homophilic and the heterophilic binding activities of Ng-CAM are localized in the F135 fragment of the molecule. The results also indicated that proteolytic cleavage of Ng- CAM200 is not required either for its expression on the cell surface or for cell adhesion and that there is an "anchor" for F135 on L cells (and presumably on neurons). In contrast to the cell binding results, the F80 but not the F135 fusion protein enhanced the outgrowth of neurites from dorsal root ganglion cells; this activity was associated with the FnIII repeats of F80. The observations that a protein corresponding to F135 contains the cell aggregation sites whereas one corresponding to the F80 has the ability to promote neurite outgrowth suggest that proteolytic cleavage may be an important event in regulating these Ng-CAM activities during embryonic development and neural regeneration.  相似文献   

6.
To measure the adhesion of cells expressing the neural cell adhesion molecule N-CAM, mouse Lmtk fibroblast cells were transfected by a calcium phosphate precipitation technique with eucaryotic expression vectors encoding N-CAM polypeptides. We obtained cell lines expressing the 140-kDa transmembrane isoform of N-CAM at high levels by several rounds of selection by fluorescence-activated cell sorting and compared the adhesion of these cells to that of untransfected cells using a centrifugal removal assay that measures the centrifugal force required to remove radiolabeled probe cells from a cell monolayer. The adhesion of cells prepared from embryonic chicken neural retinas also was examined. Retinal probe cells remained associated with a retinal cell monolayer with an adhesive force of approximately 5 × 10-6 dyn/cell, and this force was not reduced by treatment with specific anti-N-CAM antibody fragments. Transfected and untransfected mouse L cells each were dislodged from transfected cell monolayers with a removal force of 5 × 10-5 dyn/cell and thus did not differ in their adhesion. These results support the hypothesis that N-CAM-mediated homophilic adhesion in retinal cells and transfected fibroblasts is relatively, weak and that the major adhesive interaction involved in N-CAM-mediated cell-cell adhesion is heterophilic.  相似文献   

7.
Epimorphin: a mesenchymal protein essential for epithelial morphogenesis.   总被引:20,自引:0,他引:20  
A novel 150 kd protein expressed on the surface of mesenchymal cells of mouse embryonic tissues was identified. A monoclonal antibody to this molecule inhibited various processes of epithelial morphogenesis, such as hair follicle growth and lung epithelial tubular formation, in organ cultures of these tissues. Sequence analysis of cDNA encoding this protein revealed that it had 289 amino acids with a hydrophobic stretch at the C-terminus. NIH 3T3 cells transfected with the cDNA of this protein expressed the exogenous 150 kd protein on their surface. When lung epithelial cells were cocultured with these transfected cells, they showed normal tubular morphogenesis, but not with untransfected NIH 3T3 cells. These results indicate that this protein, termed epimorphin, plays a central role in epithelial-mesenchymal interactions.  相似文献   

8.
Fasciclin III: a novel homophilic adhesion molecule in Drosophila   总被引:16,自引:0,他引:16  
P M Snow  A J Bieber  C S Goodman 《Cell》1989,59(2):313-323
Drosophila fasciclin III is an integral membrane glycoprotein that is expressed on a subset of neurons and fasciculating axons in the developing CNS, as well as in several other tissues during development. Here we report on the isolation of a full-length cDNA encoding an 80 kd form of fasciclin III. We have used this cDNA, under heat shock control, to transfect the relatively nonadhesive Drosophila S2 cell line. Examination of these transfected cells indicates that fasciclin III is capable of mediating adhesion in a homophilic, Ca2+-independent manner. Sequence analysis reveals that fasciclin III encodes a transmembrane protein with no significant homology to any known protein, including the previously characterized families of vertebrate cell adhesion molecules. The distribution of this adhesion molecule on subsets of fasciculating axons and growth cones during Drosophila development suggests that fasciclin III plays a role in growth cone guidance.  相似文献   

9.
Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling.  相似文献   

10.
Platelet adhesion to vascular endothelial cells is a pathophysiologically relevant cell-to-cell interaction. However, the mechanisms underlying this cellular interaction are incompletely understood. In search of the ligand for CD226 adhesion molecule expressed on platelets, we found that human umbilical vein endothelial cells (HUVEC) express significant amount of putative CD226 ligand. We demonstrated that thrombin-activated, but not resting, platelets bind to intact HUVEC. Anti-CD226 monoclonal antibody specifically inhibited the binding, indicating that CD226 mediates the intercellular binding between thrombin-activated platelets and HUVEC. We also demonstrated that platelet activation with thrombin induces tyrosine phosphorylation of CD226 as well as CD226-mediated platelet adhesion. Moreover, experiments using mutant transfectants suggested that the tyrosine at residue 322 of CD226 plays an important role for its adhesive function. CD226 was also expressed on primary megakaryocytes and megakaryocytic cell lines. Anti-CD226 monoclonal antibody inhibited binding of megakaryocytic cell lines to HUVEC. Taken together, these results reveal a novel mechanism for adhesion of platelets and megakaryocytic cells to vascular endothelial cells.  相似文献   

11.
G J Cole  C F McCabe 《Neuron》1991,7(6):1007-1018
Monoclonal antibodies have been used to identify a 320 kd keratan sulfate proteoglycan that is primarily expressed in the embryonic chick nervous system. Immunohistochemical localization of the proteoglycan shows that it is expressed by putative midline barrier structures in the developing chick central nervous system. When added to laminin or neural cell adhesion molecule that has been adsorbed onto nitrocellulose-coated dishes, the proteoglycan abolishes cell attachment and neurite outgrowth on these adhesive substrata. This effect can be reversed by keratanase treatment and incubation with a monoclonal antibody that recognizes the keratan sulfate chains of the proteoglycan. These data suggest that this neural keratan sulfate proteoglycan plays an important role in the modulation of neuronal cell adhesion during embryonic brain development.  相似文献   

12.
The biosynthesis and membrane topography of the neural cell adhesion molecule L1 have been studied in cerebellar cell cultures by metabolic labeling and immunoprecipitation. Pulse and pulse-chase experiments with [35S]methionine show that L1 is synthesized in its high mol. wt. form, the 200 kd component. The lower mol. wt. components with 40, 80 and 140 K apparent mol. wts. can be generated by proteolysis in intact cellular membranes. Peptide maps generated by protease treatment of L1 isolated from adult mouse brain show that the 80 and 140 kd components are related to the 200 kd component, but not to each other. The 200, 80 and 40 kd components can be biosynthetically phosphorylated. The 140 kd component is not phosphorylated and not released from the surface membrane during tryspinization. The phosphorylated amino acid is serine. In the presence of tunicamycin the 200 kd component is synthesized as a 150 kd protein. Pulse-chase experiments in the presence of tunicamycin indicate that the carbohydrate moieties are predominantly N-glycosidically linked and that the contribution of O-glycosylation is minimal. The carbohydrate moieties are of the complex type as shown by treatment with endoglycosidase H. Since monensin inhibits processing of the carbohydrate moieties, the 200 kd component appears to be transported to the surface membrane via the Golgi apparatus.  相似文献   

13.
Interleukin 2 activates a receptor-associated protein kinase   总被引:2,自引:0,他引:2  
The interleukin 2 (IL 2) receptor complex has been shown to consist of at least two IL 2 binding molecules, one of 55 to 57 kd (gp57Tac) and one of 75 to 78 kd apparent m.w. The data presented here indicate that a protein of m.w. 78,000 (pp78) co-immunoprecipitates with gp57Tac when a monoclonal antibody against gp57Tac is used. The 78 kd molecule is phosphorylated in vitro within the immune complex only in the presence of exogenously added IL 2, whereas the 57 kd molecule is phosphorylated equally in the presence or absence of IL 2. Phosphorylation in vitro of pp78 was demonstrated in extracts of human peripheral blood T cells (PBL-T) and the human T cell line Jurkat, but not in extracts of the human macrophage line U937 or the murine T cell line 2.8.2. Metabolic phosphorylation in intact cells reflects results observed in vitro; both pp78 and gp57Tac are phosphorylated in PBL-T and Jurkat, but not in U937. These data demonstrate that the IL 2 receptor complex contains an IL 2 responsive protein kinase activity and may signal the cell through a phosphorylation event.  相似文献   

14.
Neurite outgrowth factor (NOF) is an extracellular matrix (ECM) protein in the laminin family and its ligand, gicerin, is a novel cell adhesion molecule in the immunoglobulin superfamily. Gicerin has a homophilic adhesive activity as well as a heterotypic manner to NOF. In the nervous systems, gicerin is expressed during developmental stage when neurons migrate or extend neurites to form a neural network. Gicerin promotes neurite extension and migration of embryonic neurons in vitro by its homophilic and heterophilic adhesion activities. Introduction of antigicerin antibody into early developing eyes perturbs the layer formation of neural retina. These data suggest that gicerin participates in the formation of neural tissues. Gicerin is also expressed in other non-neural tissues; in epithelia of trachea, kidney and oviduct, gicerin expression is restricted in the developmental period. In contrast, muscular tissues and endothelial cells express gicerin continuously even after maturation. Interestingly, gicerin re-appears strongly in the regenerating epithelia of trachea, kidney and oviduct, and also anti-gicerin antibody disrupts the healing process of trachea. Furthermore, gicerin and NOF are overexpressed in the chicken nephroblastomas (Wilm's tumor) and oviductal adenocarcinomas. In vitro analyses show that gicerin adhesive activities can promote binding among tumor cells and adhesion of tumor cells to NOF. A polyclonal antibody against gicerin also perturbs the re-attachment of cancer cells onto metastasizing sites. It is clear from these studies that gicerin is a potential effector for pathological tissue formation as well as for normal development.  相似文献   

15.
The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal perturbing drugs colchicine and cytochalasin D. These results indicated that the tubulin and actin cytoskeletons were not critically required for adhesion to NCAM and make it unlikely that the cell surface ligand for NCAM is an integrin. Adhesion was however temperature dependent, strengthening greatly after a brief incubation at 37 degrees C. CHO cells transfected with NCAM cDNAs did not adhere specifically to substratum-bound NCAM and pretreatment of N2A cells and retinal cells with anti-NCAM antibodies did not inhibit adhesion to substratum-bound NCAM. These results suggest that a heterophilic interaction between substratum-adsorbed NCAM and a non-NCAM ligand on the surface of the probe cells affects adhesion in this system and support the possibility that heterophilic adhesion may be a function of NCAM in vivo.  相似文献   

16.
Nr-CAM is a membrane glycoprotein that is expressed on neurons. It is structurally related to members of the N-CAM superfamily of neural cell adhesion molecules having six immunoglobulin-like domains and five fibronectin type III repeats in the extracellular region. We have found that the aggregation of chick brain cells was inhibited by anti-Nr-CAM Fab' fragments, indicating that Nr-CAM can act as a cell adhesion molecule. To clarify the mode of action of Nr-CAM, a mouse fibroblast cell line L-M(TK-) (or L cells) was transfected with a DNA expression construct encoding an entire chicken Nr-CAM cDNA sequence. After transfection, L cells expressed Nr-CAM on their surface and aggregated. Aggregation was specifically inhibited by anti-Nr-CAM Fab' fragments. To check the specificity of this aggregation, a fusion protein (FGTNr) consisting of glutathione S-transferase linked to the six immunoglobulin domains and the first fibronectin type III repeat of Nr-CAM was expressed in Escherichia coli. Addition of FGTNr to the transfected cells blocked their aggregation. Further analysis using a combination of cell aggregation assays, binding of cells to FGTNr-coated substrates, aggregation of FGTNr-coated Covaspheres and binding of FGTNr-coated Covaspheres to FGTNr-coated substrates revealed that Nr-CAM mediates two types of cell interactions: a homophilic, divalent cation-independent binding, and a heterophilic, divalent cation-dependent binding. Homophilic binding was demonstrated between transfected L cells, between chick embryo brain cells and FGTNr, and between Covaspheres to which FGTNr was covalently attached. Heterophilic binding was shown to occur between transfected and untransfected L cells, and between FGTNr and primary chick embryo fibroblasts; in all cases, it was dependent on the presence of either calcium or magnesium. Primary chick embryo glia or a human glial cell line did not bind to FGTNr-coated substrates. The results indicate that Nr-CAM is a cell adhesion molecule of the nervous system that can bind by two distinct mechanisms, a homophilic mechanism that can mediate interactions between neurons and a heterophilic mechanism that can mediate binding between neurons and other cells such as fibroblasts.  相似文献   

17.
Cell-cell adhesion is fundamental to multicellular life and is mediated by a diverse array of cell surface proteins. However, the adhesive interactions for many of these proteins are poorly understood. Here we present a simple, rapid method for characterizing the adhesive properties of putative homophilic cell adhesion molecules. Cultured HEK293 cells are transfected with DNA plasmid encoding a secreted, epitope-tagged ectodomain of a cell surface protein. Using functionalized beads specific for the epitope tag, the soluble, secreted fusion protein is captured from the culture medium. The coated beads can then be used directly in bead aggregation assays or in fluorescent bead sorting assays to test for homophilic adhesion. If desired, mutagenesis can then be used to elucidate the specific amino acids or domains required for adhesion. This assay requires only small amounts of expressed protein, does not require the production of stable cell lines, and can be accomplished in 4 days.  相似文献   

18.
Abstract. A new clone of the mouse embryonal carcinoma cell line 1003 (EC 1003.16) can be maintained in an undifferentiated state in serum-containing medium. Shifting these cells to serum-free, hormonally defined medium causes them to differentiate morphologically and acquire a number of molecular properties characteristic of neurons. Whereas undifferentiated cells lack the NILE/L1 glycoprotein, expression of this neuronal cell adhesion niolecule is induced in the differentiating cells. Message for NILE/L1 becomes detectable after 5 days in serum-free medium, and cell-surface NILE/L1 can first be seen at this same time. Changes in two other cell adhesion molecules occur in parallel with the induction of NILE/L1. Fibronectin receptor is present on un- differentiated cells, but is down-regulated by the differentiating neurons. The neural cell adhesion molecule (N- CAM) undergoes a shift from the very adhesive adult form to the less adhesive, highly sialylated embryonic form. These changes would appear to emphasize the role of NILE/L1 in adhesive interactions involving differentiating neurons. Some changes in ganglioside expression also occur during EC 1003.16 differentiation. Undifferentiated cells express the D 1.1 ganglioside but lack gangliosides that are reactive with the monoclonal antibody A,B, Differentiating cells lose D 1.1 and become A,B,-positive. Since D 1.1 is characteristic of undifferentiated neuroepithelial cells and A,B, reactivity is a marker for several types of differentiated neurons, these changes in vitro appear to mimic events that occur in vivo.  相似文献   

19.
We have recently identified a novel gene, hepaCAM, in liver that encodes a cell adhesion molecule of the immunoglobulin superfamily. In this study, we examined the characteristics of hepaCAM protein and the relationship between its structure and function, in particular its adhesive properties. The wild-type and the cytoplasmic domain-truncated mutants of hepaCAM were transfected into the human breast carcinoma MCF7 cells, and the physiological and biological properties were assessed. Biochemical analyses revealed that hepaCAM is an N-linked glycoprotein phosphorylated in the cytoplasmic domain and that it forms homodimers through cis-interaction on the cell surface. The subcellular localization of hepaCAM appears density-dependent; in well spread cells, hepaCAM is distributed to cell protrusions, whereas in confluent cells, hepaCAM is predominantly accumulated at the sites of cell-cell contacts on the cell membrane. In polarized cells, hepaCAM is recruited to the lateral and basal membranes, and lacking physical interaction, hepaCAM is shown to co-localize with E-cadherin at the lateral membrane. Cell adhesion and motility assays demonstrated that hepaCAM increased cell spreading on the matrices fibronectin and matrigel, delayed cell detachment, and enhanced wound healing. Furthermore, when the cytoplasmic domain was deleted, hepaCAM mutants did not affect cell surface localization and dimer formation. Cell-matrix adhesion, however, was less significantly increased, and cell motility was almost unchanged when compared with the effect of the wild-type hepaCAM. Taken together, the cytoplasmic domain of hepaCAM is essential to its function on cell-matrix interaction and cell motility.  相似文献   

20.
《The Journal of cell biology》1989,109(6):3465-3476
Mouse 3T3 fibroblasts were permanently transfected with cDNAs encoding isoforms of the neural cell adhesion molecule (N-CAM) present in human skeletal muscle and brain. Parental and transfected cells were then used in a range of adhesion assays. In the absence of external shear forces, transfection with cDNAs encoding either transmembrane or glycosylphosphatidylinositol (GPI)-linked N-CAM species significantly increased the intercellular adhesiveness of 3T3 cells in suspension. Transfection of a cDNA encoding a secreted N-CAM isoform was without effect on adhesion. Cells transfected with cDNAs containing or lacking the muscle-specific domain 1 sequence, a four-exon group spliced into the muscle but not the brain GPI-linked N-CAM species, were equally adhesive in the assays used. We also demonstrate that N-CAM-mediated intercellular adhesiveness is inhibited by 0.2 mg/ml heparin; but, at higher concentrations, reduced adhesion of parental cells was also seen. Coaggregation of fluorescently labeled and unlabeled cell populations was performed and measured by comparing their distribution within aggregates with distributions that assume nonspecific (random) aggregation. These studies demonstrate that random aggregation occurs between transfected cells expressing the transmembrane and GPI-linked N- CAM species and between parental cells and those expressing the secreted N-CAM isoform. Other combinations of these populations tested exhibited partial adhesive specificity, indicating homophilic binding between surface-bound N-CAM. Thus, the approach exploited here allows for a full analysis of the requirements, characteristics, and specificities of the adhesive behavior of individual N-CAM isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号