首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Summary Restriction sites were introduced into the Escherichia coli melR gene that facilitated the fusion of other proteins to MelR. Both -galactosidase and the constant domain of the human IgG kappa light chain were fused to MelR. However, whilst unmodified MelR could be over-expressed, neither MelR fusion protein was over-produced. Addition of an extra domain to MelR leads to reduced expression in a number of genetic backgrounds.  相似文献   

10.
11.
12.
13.
14.
Tang TK  Wu MP  Chen ST  Hou MH  Hong MH  Pan FM  Yu HM  Chen JH  Yao CW  Wang AH 《Proteomics》2005,5(4):925-937
Severe acute respiratory syndrome (SARS) is a serious health threat and its early diagnosis is important for infection control and potential treatment of the disease. Diagnostic tools require rapid and accurate methods, of which a capture ELISA method may be useful. Toward this goal, we have prepared and characterized soluble full-length nucleocapsid proteins (N protein) from SARS and 229E human coronaviruses. N proteins form oligomers, mostly as dimers at low concentration. These two N proteins degrade rapidly upon storage and the major degraded N protein is the C-terminal fragment of amino acid (aa) 169-422. Taken together with other data, we suggest that N protein is a two-domain protein, with the N-terminal aa 50-150 as the RNA-binding domain and the C-terminal aa 169-422 as the dimerization domain. Polyclonal antibodies against the SARS N protein have been produced and the strong binding sites of the anti-nucleocapsid protein (NP) antibodies produced were mapped to aa 1-20, aa 150-170 and aa 390-410. These sites are generally consistent with those mapped by sera obtained from SARS patients. The SARS anti-NP antibody was able to clearly detect SARS virus grown in Vero E6 cells and did not cross-react with the NP from the human coronavirus 229E. We have predicted several antigenic sites (15-20 amino acids) of S, M and N proteins and produced antibodies against those peptides, some of which could be recognized by sera obtained from SARS patients. Antibodies against the NP peptides could detect the cognate N protein clearly. Further refinement of these antibodies, particularly large-scale production of monoclonal antibodies, could lead to the development of useful diagnostic kits for diseases associated with SARS and other human coronaviruses.  相似文献   

15.
The specificity of C57BL/6 T cells reactive to peptide aa 74-96 of hen egg-white lysozyme (HEL) was analyzed by using a panel of synthetic peptides of varying lengths from this region. It was found that peptide 74-96-reactive T cells induced by native HEL (aa 1-129) or its denatured fragment L2 (aa 13-105) recognized two distinct but overlapping determinants contained within aa 74-90 or aa 81-96, respectively. Peptide 74-96 itself induced both peptide 74-90-and peptide 81-96-specific T cells. Thus, a choice was made between these two potential T cell determinants on peptide 74-96, depending on which immunogen was used. Interestingly, the ability of both peptide determinants aa 74-90 and aa 81-96 to stimulate peptide 74-96-reactive T cells was partly dependent on the presence of residues within the overlap region (aa 81-90), suggesting that this region may play an important role in Iab-restricted T cell activation. This was further supported by the poor immunogenicity of shorter peptides 74-86 or 85-96, lacking residues from the overlap region in B6 mice. These two short peptides were nevertheless capable of eliciting T cell responses in B10.A mice, suggesting that the importance of this overlap region in obtaining a response to peptide 74-96 is related to the MHC haplotype.  相似文献   

16.
Members of the large serine resolvase family of site-specific recombinases are responsible for the movement of several mobile genetic elements; however, little is known regarding the structure or function of these proteins. TnpX is a serine recombinase that is responsible for the movement of the chloramphenicol resistance elements of the Tn4451/3 family. We have shown that TnpX binds differentially to its transposon and target sites, suggesting that resolvase-like excision and insertion were two distinct processes. To analyze the structural and functional domains of TnpX and, more specifically, to define the domains involved in protein-DNA and protein-protein interactions, we conducted limited proteolysis studies on the wild-type dimeric TnpX(1-707) protein and its functional truncation mutant, TnpX(1-597). The results showed that TnpX was organized into three major domains: domain I (amino acids (aa) 1-170), which included the resolvase catalytic domain; domain II (aa 170-266); and domain III (aa 267-707), which contained the dimerization region and two separate regions involved in binding to the DNA target. A small polypeptide (aa 533-587) was shown to bind specifically to the TnpX binding sites providing further evidence that it was the primary DNA binding region. In addition, a previously unidentified DNA binding site was shown to be located between residues 583 and 707. Finally, the DNA binding and multerimization but not the catalytic functions of TnpX could be reconstituted by recombining separate polypeptides that contain the N- and C-terminal regions of the protein. These data provide evidence that TnpX has separate catalytic, DNA binding, and multimerization domains.  相似文献   

17.
To determine the role of the extra domain A (EDA) and type III connecting segment (IIICS) of fibronectin in fiber assembly, topographical distribution and proteolytic cleavage, eight full-length human fibronectin cDNA variants (aa0, aa64, aa89, and aa120 variations in the IIICS with or without the EDA) tagged with the V5 epitope were cloned from human endothelial cells and were expressed in CHO-K1 cells. All eight variants were assembled on cell surfaces. However, only the EDA(+) variants, regardless of the type of the IIICS domain, formed extensive fibrous networks. In contrast, the EDA(-)/aa64 and EDA(-)/aa89 variants were present predominantly as a soluble form. Western analysis of both soluble and cell-associated fibronectin/V5 variants showed that aa64, aa89, and aa120 variants with or without the EDA domain produced the major 50- to 62-kDa C-terminal fragments, whereas the aa0 variants did not, suggesting that the IIICS domain provides proteolytic cleavage sites.  相似文献   

18.
Five adherence-inhibiting monoclonal antibodies (mAbs) were used for topological mapping of the binding sites of the 169 kDa membrane-integrated adhesin of Mycoplasma pneumoniae. Antibody binding sites were characterized using overlapping synthetic octapeptides. Three regions of the protein seem to be involved in adherence: the N-terminal region [N-reg, epitopes beginning at amino acid (aa) 1 to aa 14 and aa 231 to aa 238, respectively]; a domain (D1) approximately in the middle of the molecule (beginning at aa 851 to aa 858 and aa 921 to aa 928); and a domain (D2) closer to the C-terminus (beginning at aa 1303 to aa 1310, aa 1391 to aa 1398 and aa 1407 to aa 1414). Each of the mAbs P1.26 and P1.62 reacted with two primary amino acid sequences. Both antibodies bound to the D1 region, but mAb P1.62 showed additional binding to a sequence (aa 231 to aa 238) near the N-terminus, and mAb P1.26 reacted with a second epitope in the D2 domain (aa 1303 to aa 1310). Such dual binding by the two antibodies suggests that in the native protein the epitopes are composed of two sequences which are located on two different sites of the molecule (D1/N-reg and D1/D2, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
R Evans  C Ford  M Sierks  Z Nikolov  B Svensson 《Gene》1990,91(1):131-134
Glucoamylase (GA) from Aspergillus awamori (EC 3.2.1.3) is a secreted starch hydrolase with a large catalytic domain (aa 1-440), a starch-binding domain (aa 513-616), and a highly O-glycosylated region of 72 aa of unknown function that links the catalytic and starch-binding domains. We have genetically engineered a series of truncated forms of GA to determine how much of the highly O-glycosylated region is necessary for the activity or stability of GAII, a fully active form of the enzyme that lacks the starch-binding domain. Mutations were made by inserting stop-codon linkers into restriction sites within the coding region of the GA gene, and mutated genes were expressed in Saccharomyces cerevisiae for analysis of the truncated enzymes. Our results show that up to 30 aa from the C-terminal end of GAII can be deleted with little effect on the activity, thermal stability, or secretion of the enzyme. Further deletions resulted in diminution or loss of enzyme activity on starch plates, and loss of detectable enzyme in culture supernatants, indicating that these residues are essential for GAII function.  相似文献   

20.
Binding of ATP to the inositol 1,4,5-trisphosphate receptor (IP3R) results in a more pronounced Ca2+ release in the presence of inositol 1,4,5-trisphosphate (IP3). We have expressed the cDNAs encoding two putative adenine-nucleotide binding sites of the neuronal form of IP3R-1 as glutathione S-transferase (GST)-fusion proteins in bacteria. Specific [alpha-32P]ATP binding was observed for the two GST-fusion proteins, representing aa 1710-1850 and aa 1944-2040 of IP3R-1. The ATP-binding sites in both fusion proteins had the same nucleotide specificity as found for the intact IP3R (ATP > ADP > AMP > GTP). Smaller GST-fusion proteins (aa 1745-1792 and aa 2005-2023) displayed a much weaker ATP-binding activity. CoA, which also potentiated IP3-induced Ca2+ release in A7r5 cells, interacted with the ATP-binding sites on the fusion proteins. Such interaction was not observed for 1,N6-etheno CoA and 3'-dephospho-CoA, which are much less effective in potentiating IP3-induced Ca2+ release. Since the adenine-containing compounds adenophostin A, caffeine and cyclic ADP-ribose modulate IP3-induced Ca2+ release, a possible effect of these compounds on the ATP-binding sites was examined. ATP stimulated adenophostin A- and IP3-induced Ca2+ release in A7r5 cells with an EC50 of respectively 21 and 20 microM. Also the threshold concentration of ATP for stimulating the release was similar for the two agonists. Adenophostin A (100 microM) and cyclic ADP-ribose (100 microM) were ineffective in displacing [alpha-32P]ATP from the binding sites of both GST-fusion proteins. Caffeine (50 mM), however, inhibited [alpha-32P]ATP binding to both fusion proteins by more than 50%. These data provide evidence for a direct interaction of caffeine but not of adenophostin A or cyclic ADP-ribose with the adenine-nucleotide binding sites of the IP3R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号