首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylene, carbon dioxide, and anthocyanin synthesis   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

2.
Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water.  相似文献   

3.
Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO2NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO2NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15–70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP–MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO2 NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO2NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO2 NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.  相似文献   

4.
5.
6.
The extraction of chamomile flowers using supercritical carbon dioxide was investigated with respect to extraction efficiency and compared with solvent extraction. The stability of matricine, a sensitive constituent of the essential oil of chamomile, in these extracts was studied during storage at different temperatures over 6 months. Matricine was stable at -30 degrees C. A slight decrease (80-90% recovery) occurred at +5 degrees C, whereas complete decomposition of matricine took place within 3-4 months at room temperature and at +30 degrees C, respectively. An in-line inclusion of chamomile constituents in beta-cyclodextrin (beta-CD) during the extraction process was assessed and inclusion rates between 40 and 95% were obtained depending on the amount of beta-CD and the type of chamomile constituent. No further stabilization of matricine in the carbon dioxide extract/beta-CD complexes was achieved. High residual water contents in the complexes even after freeze-drying were identified as accelerating the decomposition. In addition, the extractability of flavonoids, such as apigenin and apigenin-7-glucoside, was determined. Apigenin-7-glucoside, the more hydrophilic substance, was not extractable with pure carbon dioxide and showed a recovery of 11% using methanol modified carbon dioxide (18%, w/w) at 60 degrees C and 380 bar. Extraction conditions in the two-phase region of the binary mixture carbon dioxide-methanol (70 degrees C, 100 bar) led to a drastic change in fluid polarity and hence extractability increased to 92-95%.  相似文献   

7.
Sulfur dioxide (SO2) is a common air pollutant and is detrimental to many organs. Its toxic effects including oxidative damage, deoxyribonucleic acid (DNA) damage and inflammation have been extensively studied. However, recent studies showed that SO2 can be generated endogenously in mammals. In contrast to the toxic effects of SO2, protective effects have also been found in mammals. Endogenous SO2 has antioxidant, anti-inflammatory, anti-hypertension, and anti-atherogenic effects and regulates vascular tone and cardiac function in mammals. SO2 may have a dual role in regulating physiological and pathophysiological effects in mammals. The biological effects of SO2 in mammals are reviewed in this study.  相似文献   

8.
Ethylene was the most effective abscission accelerant examined, with decreasing activity shown by propene, carbon monoxide, acetylene, vinyl fluoride, 1-butene, and 1,3-butadiene. Carbon dioxide inhibited abscission, but its effect was overcome by ethylene. Oxygen was required for abscission as an electron acceptor for respiration and not as a potentiator or activator of the ethylene attachment site. The molecular requirements for abscission were similar to those shown by other workers for other biological processes under the influence of ethylene.  相似文献   

9.
Albino rats weighing 160 to 175 gm. were fed a complete synthetic diet containing 0.003 per cent potassium and 0.7 per cent sodium for 40 days. Controls were given the same diet plus adequate added potassium. 1. Data from analyses of serum and skeletal muscle showed (a) a fall in serum chloride concentration and an increase in serum carbon dioxide concentration and pH in the potassium-deficient rats; (b) increases of sodium, magnesium, and calcium and a decrease of potassium in the muscle of the potassium-deficient rats; (c) no change of muscle chloride or carbon dioxide concentrations in the potassium-deficient rats. (2) Application of the Wallace-Hastings calculations to these data revealed (a) intracellular pH of the skeletal muscle of the normal rat to be 6.98 +/- 0.08; (b) an increase in serum partial pressure of carbon dioxide (pCO(2)) in potassium deficiency, together with increases in concentrations of [H(2)CO(2)] and [HCO(3) (-)] per kg. extracellular water and [H(2)CO(3)] per kg. cell water; (c) a decrease in values for [CO(2)] and [HCO(3) (-)] per kg. intracellular water; (d) a fall of intracellular pH in potassium deficiency to 6.42 +/- 0.05. (3) Analyses of sacrospinalis muscle from five men undergoing operation for ruptured intervertebral disc showed a mean value of 9.46 +/- 1.31 mM carbon dioxide per kg. blood-free tissue. Some problems of interpretation of data are briefly discussed.  相似文献   

10.
11.
12.
Net photosynthesis and transpiration of seedlings from shade tolerant, moderately tolerant and intolerant tree species were measured in ambient carbon dioxide (CO2) concentrations ranging from 312 to 734 ppm. The species used, Fagus grandifolia Ehrh. (tolerant), Quercus alba L., Q. rubra L., Liriodendron tulipifera L. (moderately tolerant), Liquidambar styraciflua L. and Pinus taeda L. (intolerant), are found co-occurring in the mixed pine-hardwood forests of the Piedmont region of the southeastern United States. When seedlings were grown in shaded conditions, photosynthetic CO2 efficiency was significantly different in all species with the highest efficiency in the most shade tolerant species, Fagus grandifolia , and progressively lower efficiencies in moderately tolerant and intolerant species. Photosynthetic CO2 efficiency was defined as the rate of increase in net photosynthesis with increase in ambient CO2 concentration. When plants which had grown in a high light environment were tested, the moderately tolerant and intolerant deciduous species had the highest photosynthetic CO2 efficiencies but this capacity was reduced when these species grew in low light. The lowest CO2 efficiency and apparent quantum yield occurred in Pinus taeda in all cases. Water use efficiency was higher for all species in enriched CO2 environments but transpiration rate and leaf conductance were not affected by CO2 concentration. High photosynthetic CO2 efficiency may be advantageous for maintaining a positive carbon balance in the low light environment under a forest canopy.  相似文献   

13.
Beyer EM 《Plant physiology》1979,63(1):169-173
The relationship between ethylene action and metabolism was investigated in the etiolated pea seedling (Pisum sativum L. cv. Alaska) by inhibiting ethylene action with Ag+, high CO2, and low O2 and then determining if ethylene metabolism was inhibited in a similar manner. Ag+ (100 milligrams per liter) was clearly the most potent antiethylene treatment. Ag+ pretreatment inhibited the growth retarding action of 0.2 microliters per liter ethylene by 48% and it also inhibited the incorporation of 0.2 microliters per liter 14C2H4 into pea tips by the same amount. As the ethylene concentration was increased from 0.2 to 30 microliters per liter, the effectiveness of Ag+ in reducing ethylene action and metabolism declined in a similar fashion. Although Ag+ significantly inhibited the incorporation of 14C2H4 into tissue metabolites, the oxidation of 14C2H4 to 14CO2 was unaffected in the same tissue.  相似文献   

14.
15.
16.
Wild cherry ( Prunus avium L.) shoots were cultured in closed vessels on a proliferation medium and the volatile substances released during incubation at photosynthetic photon flux density of 30 μmol m–2 S–1 were determined. Ethylene and CO2 started forming at the beginning of the incubation period and a linear relationship between their formation was observed even at high CO2 concentrations. After 30 days of culture, CO2 reached a concentration of 30%. Shoots released elhanol and acetaldehyde after several days of incubation.  相似文献   

17.
The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation.  相似文献   

18.
A closed system was designed for concomitant determination of net CO2 uptake, transpiration, and foliar nitrogen (N) loss in soybeans (Glycine max [L.] Merr.). The CO2 uptake was monitored by infrared analysis of system air removed periodically in aliquots. Leaf vapors were trapped in calibrated tubes at Dry Ice temperature, and transpiration rate was determined from the quantity of condensate. Subsequent pyrochemiluminescent analysis of this condensate revealed reduced N forms, although a [ill] percentage (4 to 15%) of oxidized forms was found.  相似文献   

19.
Free air carbon dioxide enrichment: development,progress, results   总被引:14,自引:0,他引:14  
Hendrey  G. R.  Lewin  K. F.  Nagy  J. 《Plant Ecology》1993,104(1):17-31
Credible predictions of climate change depend in part on predictions of future CO2 concentrations in the atmosphere. Terrestrial plants are a large sink for atmospheric CO2 and the sink rate is influenced by the atmospheric CO2 concentration. Reliable field experiments are needed to evaluate how terrestrial plants will adjust to increasing CO2 and thereby influence the rate of change of atmospheric CO2. Brookhaven National Laboratory (BNL) has developed a unique Free-Air CO2 Enrichment (FACE) system for a cooperative research program sponsored by the U.S. Department of Energy and U.S. Department of Agriculture, currently operating as the FACE User Facility at the Maricopa Agricultural Center (MAC) of the University of Arizona. The BNL FACE system is a tool for studying the effects of CO2 enrichment on vegetation and natural ecosystems, and the exchange of carbon between the biosphere and the atmosphere, in open-air settings without any containment. The FACE system provides stable control of CO2 at 550 ppm ±10%, based on 1-min averages, over 90% of the time. In 1990, this level of control was achieved over an area as large as 380 m2, at an annual operating cost of $668 m–2. During two field seasons of enrichment with cotton (Gossypium hirsutum) as the test plant, enrichment to 550 ppm CO2 resulted in significant increases in photosynthesis and biomass of leaves, stems and roots, reduced evapotranspiration, and changes in root morphology. In addition, soil respiration increased and evapotranspiration decreased.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号