首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas abietaniphila BKME-9 is able to degrade dehydroabietic acid (DhA) via ring hydroxylation by a novel dioxygenase. The ditA1, ditA2, and ditA3 genes, which encode the alpha and beta subunits of the oxygenase and the ferredoxin of the diterpenoid dioxygenase, respectively, were isolated and sequenced. The ferredoxin gene is 9. 2 kb upstream of the oxygenase genes and 872 bp upstream of a putative meta ring cleavage dioxygenase gene, ditC. A Tn5 insertion in the alpha subunit gene, ditA1, resulted in the accumulation by the mutant strain BKME-941 of the pathway intermediate, 7-oxoDhA. Disruption of the ferredoxin gene, ditA3, in wild-type BKME-9 by mutant-allele exchange resulted in a strain (BKME-91) with a phenotype identical to that of the mutant strain BKME-941. Sequence analysis of the putative ferredoxin indicated that it is likely to be a [4Fe-4S]- or [3Fe-4S]-type ferredoxin and not a [2Fe-2S]-type ferredoxin, as found in all previously described ring-hydroxylating dioxygenases. Expression in Escherichia coli of ditA1A2A3, encoding the diterpenoid dioxygenase without its putative reductase component, resulted in a functional enzyme. The diterpenoid dioxygenase attacks 7-oxoDhA, and not DhA, at C-11 and C-12, producing 7-oxo-11, 12-dihydroxy-8,13-abietadien acid, which was identified by 1H nuclear magnetic resonance, UV-visible light, and high-resolution mass spectrometry. The organization of the genes encoding the various components of the diterpenoid dioxygenase, the phylogenetic distinctiveness of both the alpha subunit and the ferredoxin component, and the unusual Fe-S cluster of the ferredoxin all suggest that this enzyme belongs to a new class of aromatic ring-hydroxylating dioxygenases.  相似文献   

2.
3.
4.
Using a semi-continuous enrichment method, we isolated two thermophilic bacterial strains, which could completely degrade abietane resin acids, including dehydroabietic acid (DhA). Strain DhA-73, isolated from a laboratory-scale bioreactor treating bleached kraft mill effluent at 55 degrees C, grew on DhA as sole carbon source; while DhA-71, isolated from municipal compost, required dilute tryptic soy broth for growth on DhA. DhA-71 grew on DhA from 30 degrees C to 60 degrees C with maximum growth at 50 degrees C; while, DhA-73 grew on DhA from 37 degrees C to 60 degrees C with maximum growth at 55 degrees C. At 55 degrees C, the doubling times for DhA-71 and DhA-73 were 3.3 and 3.7 h, respectively. DhA-71 and DhA-73 had growth yields of 0.26 and 0.19 g of protein per g of DhA, respectively. During growth on DhA, both strains converted DhA to CO2, biomass, and dissolved organic carbon. Analyses of the 16S-rDNA sequences of these two strains suggest that they belong to two new genera in the Rubrivivax subgroup of the beta subclass of the Proteobacteria. Strains DhA-71 and DhA-73 are the first two bacteria isolated and characterized that are capable of biodegradation of resin acids at high temperatures. This study provided direct evidence for biodegradation of resin acids and feasibility for biotreatment of pulp mill effluent at elevated temperatures.  相似文献   

5.
W W Mohn 《Applied microbiology》1995,61(6):2145-2150
Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Chlorinated dehydroabietic acids are formed during the chlorine bleaching of wood pulp and are very toxic to fish. Thus, destruction of these compounds is an important function of biological treatment systems for pulp and paper mill effluents. In this study, 12 strains of diverse, aerobic resin acid-degrading bacteria were screened for the ability to grow on chlorinated dehydroabietic acids as sole organic substrates. All seven strains of the class Proteobacteria able to use dehydroabietic acid were also able to use a mixture of 12- and 14-chlorodehydroabietic acid (Cl-DhA). None of the strains used 12,14-dichlorodehydroabietic acid. Sphingomonas sp. strain DhA-33 grew best on Cl-DhA and simultaneously removed both Cl-DhA isomers. Ralstonia sp. strain BKME-6 was typical of most of the strains tested, growing more slowly on Cl-DhA and leaving higher residual concentrations of Cl-DhA than DhA-33 did. Strains DhA-33 and BKME-6 mineralized (converted to CO(inf2) plus biomass) 32 and 43%, respectively, of carbon in Cl-DhA consumed. Strain DhA-33 produced a metabolite from Cl-DhA, tentatively identified as 3-oxo-14-chlorodehydroabietin, and both strains produced dissolved organic carbon which may include unidentified metabolites. Cl-DhA removal was inducible in both DhA-33 and BKME-6, and induced DhA-33 cells also removed 12,14-dichlorodehydroabietic acid. Based on activities of strains DhA-33 and BKME-6, chlorinated DhAs, and potentially toxic metabolite(s) of these compounds, are relatively persistent in biological treatment systems and in the environment.  相似文献   

7.
8.
We have developed an alternative method to amplify DNA sequences flanking Tn5 transposon insertions. This method relies on the identical sequences of inverted terminal repeats, located at the 5' and 3' ends of Tn5, to determine the location and orientation of a transposon insertion within a restriction endonuclease fragment. From this information, PCR primers can be designed to selectively amplify by inverse PCR the DNA flanking one side of the transposon. This method avoids the problem of amplifying or cloning long sequences flanking Tn5. To demonstrate the applicability of this method, we generated Tn5 transposon mutants of Pseudomonas abietaniphila BKME-9 which no longer grew on dehydroabietic acid (DhA). The flanking sequence of one of the mutant (strain BKME-941) which accumulated 7-oxoDhA, was amplified.  相似文献   

9.
Abstract The 16S rRNA:rDNA ratio is a useful parameter for measuring metabolic activity of a selected member of a complex microbial community, as in pulp effluent activated sludge systems. The RNA:DNA ratio of Sphingomonas sp. DhA-33, previously isolated from a sequencing batch reactor treating pulp mill effluent, is positively correlated with its growth rate (μ) under steady-state conditions. DhA-33 was grown in a chemostat with growth rates ranging from 0.04 to 0.15 cell divisions per hour. DhA-33 was also able to degrade dehydroabietic acid in bleached kraft mill effluent (BKME) plus mineral medium in batch culture. Slot-blot hybridization with radioactively labeled species-specific oligonucleotide probes for 16S rRNA and 16S rDNA was used to measure rRNA, rDNA, and the RNA:DNA ratio of this strain when in a mixed sludge community. An increase in DhA-33 rDNA indicated growth of DhA-33 within the community. The RNA:DNA ratio of DhA-33 increased sharply during exponential growth and declined as cells entered stationary phase. The RNA:DNA ratio decreased earlier and faster in DhA- 33/sludge co-cultures than in DhA-33 pure cultures, presumably due to an earlier depletion of nutrients. The species-specific quantification of the RNA:DNA ratio makes it possible to estimate the metabolic activity of selected members of a microbial community in situ. Received: 15 March 1999; Accepted: 8 July 1999; Online Publication: 15 February 2000  相似文献   

10.
Resin acids are tricyclic diterpenoids that are found in the oleoresin of coniferous trees. Resin-acid-degrading microorganisms are ubiquitous in the environment. The bacterial isolates that grow on resin acids as sole organic substrates are physiologically and phylogenetically diverse, and include psychrotolerant, mesophilic, and thermophilic bacteria. Recent studies of the biodegradation of resin acids by these organisms have demonstrated that in gram-negative bacteria, distinct biochemical pathways exist for the degradation of abietane- and pimerane-type resin acids. One of these organisms, Pseudomonas abietaniphila BKME-9, harbors a convergent pathway that channels the nonaromatic abietanes and dehydroabietic acid into 7-oxodehydroabietic acid. This dioxygenolytic pathway is encoded by the recently cloned and sequenced dit gene cluster. The dit cluster encodes the ferredoxin and the α- and β-subunits of a new class of ring-hydroxylating dioxygenases as well as an extradiol ring-cleavage dioxygenase. Although it was previously thought that resin acids are very recalcitrant under anoxic conditions, recent investigations have demonstrated that they are partially metabolized under anoxic conditions by undefined microorganisms. The anaerobic degradation of resin acids principally generates aromatized and decarboxylated products (such as retene) that are thought to persist in the environment. Received: 9 April 1999 / Accepted: 1 July 1999  相似文献   

11.
Abietane terpenoid-degrading organisms include Sphingomonas spp which inhabit natural environments and biological treatment systems. An isolate from the high Arctic indicates that these organisms occur far from trees which synthesize abietanes and suggests that some of these organisms can occupy a niche in hydrocarbon-degrading soil communities. Abietane-degrading Sphingomonas spp provide additional evidence that the phylogeny of this genus is independent of the catabolic capabilities of its members. Studies of Sphingomonas sp DhA-33 demonstrate that biological treatment systems for pulp mill effluents have the potential to mineralize abietane resin acids. On the other hand, these studies indicate that some chlorinated dehydroabietic acids are quite recalcitrant. Strain DhA-33 grows relatively well on some chlorinated dehydroabietic acids but transforms others to stable metabolites. Using strain DhA-33, a novel method was developed to measure the metabolic activity of an individual population within a complex microbial community. Oligonucleotide hybridization probes were used to assay the 16S rRNA:rDNA ratio of DhA-33 as it grew in an activated sludge community. However, this method proved not to be sufficiently sensitive to measure naturally occurring resin acid-degrading populations. We propose that the same approach can be modified to use more sensitive assays. Received 01 May 1999/ Accepted in revised form 19 July 1999  相似文献   

12.
13.
Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents.  相似文献   

14.
Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82°N, 62°W). According to most-probable-number assays, resin acid degraders were abundant (103 to 104 propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (106 to 107 propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4°C to 30°C (DhA-91 and DhA-95) or 4°C to 22°C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22°C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents.  相似文献   

15.
The 80-kb dit cluster of Burkholderia xenovorans LB400 encodes the catabolism of abietane diterpenoids. This cluster includes ditQ and ditU, predicted to encode cytochromes P450 (P450s) belonging to the poorly characterized CYP226A subfamily. Using proteomics, we identified 16 dit-encoded proteins that were significantly more abundant in LB400 cells grown on dehydroabietic acid (DhA) or abietic acid (AbA) than in succinate-grown cells. A key difference in the catabolism of DhA and AbA lies in the differential expression of the P450s; DitU was detected only in the AbA-grown cells, whereas DitQ was expressed both during growth on DhA and during growth on AbA. Analyses of insertion mutants showed that ditQ was required for growth on DhA, ditU was required for growth on AbA, and neither gene was required for growth on the central intermediate, 7-oxo-DhA. In cell suspension assays, patterns of substrate removal and metabolite accumulation confirmed the role of DitU in AbA transformation and the role of DitQ in DhA transformation. Spectral assays revealed that DitQ binds both DhA (dissociation constant, 0.98 ± 0.01 μM) and palustric acid. Finally, DitQ transformed DhA to 7-hydroxy-DhA in vitro. These results demonstrate the distinct roles of the P450s DitQ and DitU in the transformation of DhA and AbA, respectively, to 7-oxo-DhA in a convergent degradation pathway.  相似文献   

16.
BTX (benzene, toluene and xylene) degrading bacteria were isolated from Pacific Ocean sediment and nearshore surface water. In the seawater near a ferry dock, degrading bacteria of a relatively wide diversity were detected, including species of Pseudomonas, Rhodococcus, Exiguobacterium and Bacillus; while species of Bacillus only have been detected from the deep-sea sediment. Most of the isolates showed degradation to more than one compound. Generally better growth was obtained with p-xylene and ethylbenzene than with the other two. All the bacteria could tolerate and grow with the compounds at 5–20% (v/v). Both benzene and toluene degradation related genes had been successfully PCR cloned from the isolates of nearshore water, the detected benzene dioxygenase gene was identical among all the species and close to its soil counterpart. However, they were not detected in all the isolates from deep sea. Results in this report suggested that BTX degrading bacteria widely spread in marine environments and they might be of potentials in biotreatment of BTEX in saline environments.  相似文献   

17.
Resin acids are tricyclic diterpenes that are toxic to aquatic life when released in high concentrations in pulp mill effluents. These naturally formed organic acids are readily degraded by bacteria and fungi; nevertheless, many of the mechanisms involved are still unknown. We report the localization, cloning, and sequencing of genes for abietane degradation (9.18 kb; designated tdt (tricyclic diterpene) LRSABCD) from the gamma-Proteobacterium Pseudomonas diterpeniphila A19-6a. Using gene knockout mutants, we demonstrate that tdtL, encoding a putative CoA ligase, is required for growth on abietic and dehydroabietic acids. A second gene knockout in tdtD, encoding a putative cytochrome P450 monooxygenase, reduced the growth of strain A19-6a on abietic and dehydroabietic acids as sole sources of carbon and energy, but did not eliminate growth. The degree of homology between P450TdtD and P450TerpC, the closest known P450 homologue to TdtD, identifies TdtD as a new member of the P450 superfamily. Hybridization of six of the tdt genes to genomic DNA of a related resin acid degrading bacterium Pseudomonas abietaniphila BKME-9 identified tdt homologues in this strain that utilizes aromatic ring dioxygenase genes (dit) to open the ring structure of abietic and dehydroabietic acids. These results suggest the tdt and dit genes may function in concert to allow these Pseudomonas strains to degrade resin acids. Homologues of several of the tdt genes were detected in resin acid degrading Ralstonia and Comamonas species within the beta- and gamma-Proteobacteria.  相似文献   

18.
The relationship between 16S rRNA gene sequence-derived phylogeny and the bacterial production of diterpenoids from 18 isolates of marine bacteria belonging to the genus Saprospira was determined. Restriction fragment length polymorphism (RFLP) analysis of the PCR amplified 16S rRNA genes of these isolates indicated four distinct phylotypes. The terpenoid metabolite profiles of each phylotype, determined by liquid chromatography mass spectrometry (LCMS) and nuclear magnetic resonance (NMR) analyses, indicated that diterpenoid production was restricted to phylotype A, which included the type specimen S. grandis Gross, and the sole member of the closely related phylotype B. The discovery of two new neoverrucosane diterpenoids produced by phylotype B has also been documented.  相似文献   

19.
Many industrial activities produce H2S, which is toxic at high levels and odorous at even very low levels. Chemolithotrophic sulfur-oxidizing bacteria are often used in its remediation. Recently, we have reported that many heterotrophic bacteria can use sulfide:quinone oxidoreductase and persulfide dioxygenase to oxidize H2S to thiosulfate and sulfite. These bacteria may also potentially be used in H2S biotreatment. Here we report how various heterotrophic bacteria with these enzymes were cultured with organic compounds and the cells were able to rapidly oxidize H2S to zero-valence sulfur and thiosulfate, causing no apparent acidification. Some also converted the produced thiosulfate to tetrathionate. The rates of sulfide oxidation by some of the tested bacteria in suspension, ranging from 8 to 50 µmol min?1 g?1 of cell dry weight at pH 7.4, sufficient for H2S biotreatment. The immobilized bacteria removed H2S as efficiently as the bacteria in suspension, and the inclusion of Fe3O4 nanoparticles during immobilization resulted in increased efficiency for sulfide removal, in part due to chemical oxidation H2S by Fe3O4. Thus, heterotrophic bacteria may be used for H2S biotreatment under aerobic conditions.  相似文献   

20.
A quantitative real-time polymerase chain reaction (PCR) assay was developed for monitoring naphthalene degradation during bioremediation processes. The phylogenetic affiliations of known naphthalene-hydroxylating dioxygenase genes were determined to target functionally related bacteria, and degenerate primers were designed on the basis of the close relationships among dioxygenase genes identified from naphthalene-degrading Proteobacteria. Evaluation of the amplification specificity demonstrated that the developed real-time PCR assay represents a rapid, precise means for the group-specific enumeration of naphthalene-degrading bacteria. According to validation with bacterial pure cultures, the assay discriminated between the targeted group of naphthalene dioxygenase sequences and genes in other naphthalene or aromatic hydrocarbon-degrading bacterial strains. Specific amplification of gene fragments sharing a high sequence similarity with the genes included in the assay design was also observed in soil samples recovered from large-scale remediation processes. The target genes could be quantified reproducibly at over five orders of magnitude down to 3 × 102 gene copies. To investigate the suitability of the assay in monitoring naphthalene biodegradation, the assay was applied in enumerating the naphthalene dioxygenase genes in a soil slurry microcosm. The results were in good agreement with contaminant mineralization and dot blot quantification of nahAc gene copies. Furthermore, the real-time PCR assay was found to be more sensitive than hybridization-based analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号