首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The effects of nutrients and hormones on the mRNA levels of acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, and glucose 6-phosphate dehydrogenase were examined in primary cultures of rat hepatocytes during the process of induction. The addition of both glucose and insulin to the culture medium markedly enhanced the lipogenic enzyme mRNA induction due to either of them, in 16 h. Fructose or glycerol proved to be an effective substitute for glucose, suggesting that glycolytic metabolites were involved in the mRNA induction. It is remarkable that mRNA induction of acetyl-CoA carboxylase was the most sensitive to glucose and also to insulin among the lipogenic enzymes. Polyunsaturated fatty acids markedly reduced the mRNA induction of lipogenic enzymes. Dexamethasone enhanced all the lipogenic enzyme mRNA induction by insulin. On the other hand, triiodothyronine addition greatly increased the mRNA concentrations of lipogenic enzymes, but dexamethasone decreased rather than increased the mRNA induction by triiodothyronine. The effects of insulin on the induction of the lipogenic enzyme mRNAs were similar, but those of triiodothyronine were not. Triiodothyronine markedly enhanced malic enzyme mRNA induction by insulin with dexamethasone, and tended to enhance the induction of the acetyl-CoA carboxylase and fatty acid synthase mRNAs, but not that of glucose 6-phosphate dehydrogenase mRNA. It appeared that insulin and triiodothyronine synergistically enhanced lipogenic enzyme mRNA induction by glucose, but the mechanisms were different.  相似文献   

9.
Mechanisms involved in the multihormonal regulation of fatty acid synthase have been investigated by comparing levels of its mRNA with rates of enzyme synthesis in chick embryo hepatocytes in culture. Triiodothyronine or insulin caused about a 2.5-fold increase in the relative rate of synthesis of fatty acid synthase. Together, these hormones were synergistic, stimulating enzyme synthesis by nearly 40-fold (Fischer, P.W.F., and Goodridge, A.G. (1978) Arch. Biochem. Biophys. 190, 332-344). Addition of triiodothyronine stimulated increases in mRNA levels comparable to increases in enzyme synthesis whether insulin was present or not. Thus, triiodothyronine regulates fatty acid synthase primarily by controlling the amount of its mRNA. Addition of insulin, in the presence of triiodothyronine, stimulated enzyme synthesis by 14-fold and mRNA levels by only 2-fold. In the absence of triiodothyronine, insulin had no effect on mRNA levels. Thus, insulin has a major effect on the translation of fatty acid synthase mRNA. After the addition of triiodothyronine, fatty acid synthase mRNA accumulated with sigmoidal kinetics, approaching a new steady state about 48 h after the addition of hormone. Puromycin, an inhibitor of protein synthesis, blocked the effect of triiodothyronine. We suggest that the abundances of both fatty acid synthase and malic enzyme mRNAs are regulated by a common triiodothyronine-induced peptide intermediate which has a relatively long half-life. Glucagon caused an 80% decrease in the synthesis of fatty acid synthase (Fischer, P.W.F., and Goodridge, A.G. (1978) Arch. Biochem. Biophys. 190, 332-344) and a 60% decrease in the level of fatty acid synthase mRNA. Thus, glucagon regulates fatty acid synthase by controlling the concentration of its mRNA. The synthesis of malic enzyme also was inhibited by glucagon at a pretranslational step, but the inhibition was almost complete. Thus, despite coordinated regulation of the concentrations of these enzymes during starvation and refeeding, individual hormones sometimes regulate synthesis of the two enzymes at the same step and to about the same degree and sometimes at different steps or to very different degrees.  相似文献   

10.
11.
12.
采用高效的由mRNA合成cDNA的方法,我们得到了含有3.7kb的脂肪酸合成酶基因片段的克隆pFAS_(203)。它具有限制内切酶PstⅠ、BamH Ⅰ、HineⅡ、PvuⅡ、Ava Ⅰ以及Pvu Ⅰ酶切位点,与已经得到的经杂交选择的mRNA离体翻译产物鉴定的cDNA克隆pFAS_(15)有部分重叠。对饥饿的糖尿病大鼠注射胰岛素并饲以无脂食物,肝中FAS mRNA以及其前体RNA含量增加,当注射后再饲无脂食物达12小对,肝中FASmRNA及其前体RNA约为糖尿病鼠的30倍。Poly(A)~+ RNA的Northern分析表明诱导期间FASmRNA含量增加而其分子大小不变。这些结果表明胰岛素对FAS基因的转录有调节作用。胰岛素诱导后的脂肪酸合成酶活性升高是在转录水平上调节的。  相似文献   

13.
14.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

15.
16.
17.
Mouse liver mRNA enriched in sequence coding for fatty acid synthase by sucrose density gradient centrifugation was used as template for cDNA synthesis. Double-stranded cDNA sequences were inserted into pBR322 and lambda gt10 and cloned. Clones containing putative cDNA sequences for fatty acid synthase were identified by differential hybridization with [32P] cDNAs synthesized from sucrose gradient-purified liver mRNA from mice fasted or fasted and refed a high carbohydrate diet. Thirteen out of 45 differentially expressed clones were found to contain sequences complementary to fatty acid synthase mRNA. Northern blot analysis revealed that, unlike in avian and rat tissues, a single 8.2-kilobase (kb) mRNA codes for fatty acid synthase in mice. In addition to the fatty acid synthase cDNA clones, cDNA clones to two specific mRNAs of 5.1 and 7.2 kb were selected to study nutritional, hormonal, and developmental regulation at the level of mRNA abundance in mouse liver and in 3T3-L1 cells. The induction of fatty acid synthase in the livers of previously fasted mice fed a high carbohydrate diet was controlled pretranslationally by modulation of the fatty acid synthase mRNA content. The level of the two mRNAs with sizes of 5.1 and 7.2 kb were also elevated dramatically in the liver of mice fasted and refed a high carbohydrate diet. A detectable, but very low level of fatty acid synthase mRNA was found in 3T3-L1 preadipocytes. During the differentiation to adipocytes, both the rate of synthesis and relative mRNA level for fatty acid synthase increased in a parallel fashion to a maximum of 17-fold. The levels of 5.1- and 7.2-kb mRNAs, coding for proteins possibly involved in lipogenesis, increased 45- and 25-fold, respectively, during differentiation of 3T3-L1 adipocytes. Treatment of mature 3T3-L1 adipocytes with insulin elicited a 3-fold increase in both rate of synthesis and mRNA content of fatty acid synthase, while treatment with dibutyryl cAMP caused a 60% decrease in fatty acid synthase mRNA and an 80% decrease in the rate of the enzyme synthesis, indicating pretranslational control of fatty acid synthase expression by the lipogenic and lipolytic hormones. Similarly, insulin caused a 2- to 3-fold increase in both 7.2- and 5.1-kb mRNAs and dibutyryl cAMP decreased the levels of 7.2- and 5.1-kb mRNAs to 10 and 20% of control levels, respectively.  相似文献   

18.
The effect of fructose on the induction of L-type pyruvate kinase mRNA in diabetic rat liver was studied by using a cloned cDNA probe. Fructose feeding resulted in a 5- to 6-fold increase in the L-type enzyme mRNA level after 1 to 3 days. These changes were approximately proportional to the changes in the level of translatable mRNA of this enzyme. A significant increase in total cellular L-type enzyme mRNA level was observed within 2 h after fructose feeding and the level reached a maximum after 8 h. Dietary glycerol also markedly increased the L-type mRNA level. These alterations were essentially due to the changes in the cytosolic mRNA. Northern blot analysis of total cellular RNA revealed that two L-type enzyme mRNA species with molecular sizes of 2.1 and 3.6 kilobases were proportionally increased during the fructose induction. The two mRNA forms were found in immunopurified L-type enzyme mRNA and directed synthesis of the L-type subunit in vitro; they are therefore functional mature forms. In contrast, analysis of nuclear RNA showed five putative precursor RNA species for the enzyme, up to 9.4 kilobases in length, in the liver of fructose-fed rats, while no band of the RNA species was found in the nuclei of control liver. The changes in the number of bands of these RNA species and their intensities after fructose feeding preceded the changes in the level of total cellular L-type enzyme mRNA sequences. These results indicate that dietary fructose causes a rapid increase in the level of L-type pyruvate kinase mRNA sequences by acting at the nuclear level.  相似文献   

19.
Using primary cultures of adult rat hepatocytes, the regulation of the following lipogenic enzymes was studied: glucose-6-phosphate dehydrogenase, malic enzyme, ATP-citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase, and stearoyl-CoA desaturase. The addition to the culture medium of either insulin or triiodothyronine produced a 2-3-fold increase in each of the individual enzyme activities whereas glucagon slightly decreased enzyme activities. The addition to the medium of 8-bromoguanosine 3,'5'-monophosphate had no effect on any of the enzyme activities unless glucose was also added to the culture medium. Glucose addition alone to the culture medium was without any effect; however, glucose enhanced the stimulation of enzyme activity due to insulin. The addition of fructose or glycerol, even in the absence of insulin, increased the activities of each of the enzymes studied 2-3-fold. The increases in enzyme activity brought about by insulin or fructose were apparently the result of de novo enzyme synthesis, as indicated by the observation that the increases were not noted in the presence of cordycepin or cycloheximide. Immunoprecipitation of ATP-citrate lyase from hepatocytes pulse-labeled with [3H]leucine indicated that the induction of this enzyme in response to the addition of fructose or glycerol to the culture medium was the result of an increase in the rate of synthesis of the enzyme. These results indicate that the activity and synthesis of individual enzymes involved in lipogenesis are increased in response to the metabolism of carbohydrate independently in part from hormonal effects.  相似文献   

20.
L-type pyruvate kinase is an enzyme of the glycolytic pathway whose activity and mRNA levels fluctuate in the small intestine according to dietary status. Both the enzyme activity and mRNA concentration decline during fasting and increase upon refeeding either a glucose-rich or a fructose-rich diet. Using a single-strand M 13 phage complementary to L-type pyruvate kinase mRNA as probe, we determined the level of the mRNA in the small intestine of normal, adrenalectomized, thyroidectomized, diabetic and glucagon-treated or cAMP-treated animals refed either a glucose-rich or a fructose-rich diet. The specific mRNA is present in the small intestine of normal fasted rats and increases twofold and threefold on refeeding glucose and fructose respectively. However, the hormonal control of the gene expression differs according to the dietary carbohydrate. The L-type pyruvate kinase mRNA increase, induced by glucose feeding, is hormone-dependent and requires the presence of thyroid hormones and insulin. In fructose-fed rats a certain level of mRNA increase occurs regardless of the hormonal status of the animals, but the full induction of the mRNA by fructose requires the presence of glucocorticoids, thyroid hormones and insulin. Thus, the hormonal regulation of L-type pyruvate kinase gene expression in the small intestine is largely similar to that described in normal rat liver but the basal mRNA level and the stimulation of the mRNA increase by fructose are higher in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号