首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate enzymes from suspension-cultured ryegrass (Lolium multiflorum Lam.) endosperm cells incorporated glucosyl residues from UDP-glucose and GDP-glucose into β-glucans. Three types of β-glucans were produced from UDP-glucose: 1,3-β-glucan; 1,4-β-glucan; and mixed-linkage 1,3;1,4-β-glucan. As in other systems, relatively more 1,4-β-glucan was produced from a low (10 micromolar) UDP-glucose concentration, and relatively more 1,3-β-glucan was produced from a high (1 millimolar) UDP-glucose concentration. However, in ryegrass, 1,3;1,4-β-glucan represented a major proportion of the products at both low and high UDP-glucose concentrations. The arrangement of linkages in the 1,3;1,4-β-glucan was different at the two concentrations; at the low UDP-glucose concentration, more sequences of three consecutive 1,4-linkages were produced.  相似文献   

2.
Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with β-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a β-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to β-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to β-1,3–1,4-glucans while substantially decreasing the affinity for decorated β-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified β-1,3–1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.  相似文献   

3.
Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.  相似文献   

4.
Mixed-linked glucanases (MLGases), which are extracellular enzymes able to hydrolyze β1,3-1,4-glucans (also known as mixed-linked glucans or cereal β-glucans), were identified in culture filtrates of the plant-pathogenic fungus Cochliobolus carbonum. Three peaks of MLGase activity, designated Mlg1a, Mlg1b, and Mlg2, were resolved by cation-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Mlg1a and Mlg1b also hydrolyze β1,3-glucan (laminarin), whereas Mlg2 does not degrade β1,3-glucan but does degrade β1,4-glucan to a slight extent. Mlg1a, Mlg1b, and Mlg2 have monomer molecular masses of 33.5, 31, and 29.5 kDa, respectively. The N-terminal amino acid sequences of Mlg1a and Mlg1b are identical (AAYNLI). Mlg1a is glycosylated, whereas Mlg1b is not. The gene encoding Mlg1b, MLG1, was isolated by using PCR primers based on amino acid sequences of Mlg1b. The product of MLG1 has no close similarity to any known protein but does contain a motif (EIDI) that occurs at the active site of MLGases from several prokaryotes. An internal fragment of MLG1 was used to create mlg1 mutants by transformation-mediated gene disruption. The total MLGase and β1,3-glucanase activities in culture filtrates of the mutants were reduced by approximately 50 and 40%, respectively. When analyzed by cation-exchange HPLC, the mutants were missing the two peaks of MLGase activity corresponding to Mlg1a and Mlg1b. Together, the data indicate that Mlg1a and Mlg1b are products of the same gene, MLG1. The growth of mlg1 mutants in culture medium supplemented with macerated maize cell walls or maize bran and the disease symptoms on maize were identical to the growth and disease symptoms of the wild type.  相似文献   

5.
A glucosyl and a glucosyl-glucan transferase activity from spinach (Spinacia oleracea L. var. Matador) leaves have been partially purified and characterized. The latter activity (fraction 1 after diethylaminoethylcellulose chromatography) is responsible for the transfer of glucosyl as well as of maltosyl, maltotriosyl, and higher homologous residues to glucose giving rise to maltose and the correspondingly larger molecules. This fraction also shows β-amylase activity. The transfer takes place only to glucose; maltose, as well as other α-1,4-glucans, serve as donors. The enzyme fraction 2 is amylase-free and catalyzes only the transfer of glucosyl moieties, again with high acceptor specificity to glucose. Maltose and larger α-1, 4-glucans, with the exception of maltotriose and maltotetraose, act as donors. The physiological function of these enzymes may be the formation of oligosaccharide primers for starch synthetase or phosphorylase.  相似文献   

6.
The in vitro production of chitinases and β-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani, was examined under various culture conditions, such as carbon and nitrogen sources, pH, and incubation period. Production of both enzymes was influenced by the carbon source incorporated into the medium and was stimulated by acidic pH and NaNO3. The activity of both enzymes was very low in culture filtrates from cells grown on glucose and sucrose compared with that detected on chitin (for chitinases) and cell wall fragments (for β-1,3-glucanases). Protein electrophoresis revealed that, depending on the carbon source used, different isoforms of chitinases and β-1,3-glucanases were detected. S. elegans culture filtrates, possessing β-1,3-glucanase and chitinase activities, were capable of degrading R. solani mycelium.  相似文献   

7.
The eglA gene, encoding a thermostable endoglucanase from the hyperthermophilic archaeon Pyrococcus furiosus, was cloned and expressed in Escherichia coli. The nucleotide sequence of the gene predicts a 319-amino-acid protein with a calculated molecular mass of 35.9 kDa. The endoglucanase has a 19-amino-acid signal peptide but not cellulose-binding domain. The P. furiosus endoglucanase has significant amino acid sequence similarities, including the conserved catalytic nucleophile and proton donor, with endoglucanases from glucosyl hydrolase family 12. The purified recombinant enzyme hydrolyzed β-1,4 but not β-1,3 glucosidic linkages and had the highest specific activity on cellopentaose (degree of polymerization [DP] = 5) and cellohexaose (DP = 6) oligosaccharides. To a lesser extent, EglA also hydrolyzed shorter cellodextrins (DP < 5) as well as the amorphous portions of polysaccharides which contain only β-1,4 bonds such as carboxymethyl cellulose, microcrystalline cellulose, Whatman paper, and cotton linter. The highest specific activity toward polysaccharides occurred with mixed-linkage β-glucans such as barley β-glucan and lichenan. Kinetics studies with cellooliogsaccharides and p-nitrophenyl-cellooligosaccharides indicated that the enzyme had three glucose binding subsites (−I, −II, and −III) for the nonreducing end and two glucose binding subsites (+I and +II) for the reducing end from the scissile glycosidic linkage. The enzyme had temperature and pH optima of 100°C and 6.0, respectively; a half-life of 40 h at 95°C; and a denaturing temperature of 112°C as determined by differential scanning calorimetry. The discovery of a thermostable enzyme with this substrate specificity has implications for both the evolution of enzymes involved in polysaccharide hydrolysis and the occurrence of growth substrates in hydrothermal vent environments.  相似文献   

8.
9.
Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) β-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved β-1,3;1,6-glucan decasaccharide (β-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight β-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by β-1,3-endoglucanases due to the presence of three β-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of β-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant–microbe interface.

A β-1,3;1,6-glucan decasaccharide released from the fungal matrix by an apoplastic host hydrolase contributes to plant immune suppression and fungal accommodation.

IN A NUTSHELL Background: Plants secrete various hydrolytic enzymes into the apoplastic space to protect themselves against invading microbes. Some of these enzymes target the fungal cell wall polymer chitin. This enzymatic attack leads to the release of chitin oligomers, which can be perceived by the plant immune system, informing the plant to activate its defense machinery. However, chitin accounts for only a small part of most fungal cell walls. Recent studies have highlighted a largely uncharacterized, β-glucan-rich extracellular polysaccharide matrix (EPS) surrounding the cell wall of various plant-colonizing fungi. Question: This EPS matrix is made of glucose and abundantly produced during colonization. As its secretion into the extracellular environment is costly for the fungus, we explored how this EPS matrix affects plant immunity and fungal colonization. Findings: We demonstrated that EPS matrices from a symbiotic and pathogenic plant-colonizing fungus are distinct from the nonsoluble fungal cell walls with respect to their protein and carbohydrate composition. Enzymatic digests revealed that a secreted plant hydrolase from barley (HvBGLUII) acts on these EPS matrices and releases a highly branched β-glucan decasaccharide (β-GD) fragment. This fragment is not perceived by the plant immune system but instead detoxifies reactive oxygen species produced by the plant host as a defense mechanism and contributes to host colonization. We thus have shown that the outermost fungal EPS layer represents a protective shield against oxidative stress. Next steps: The diversity of linkage types and branching patterns of β-glucans not only accounts for their different biochemical properties, but also makes them important messengers for the plant, potentially encoding specific information on the approaching fungal invader. Future studies should aim to identify other plant hydrolases and the elusive glucan receptors, to disentangle the contribution of β-glucans to the communication between plant hosts and fungi.  相似文献   

10.
11.
An ultrastructural and cytochemical investigation of the development of Rigidoporus lignosus, a white-rot fungus inoculated into wood blocks, was carried out to gain better insight into the structure and role of the extracellular sheaths produced by this fungus during wood degradation. Fungal sheaths had a dense or loose fibrillar appearance and were differentiated from the fungal cell wall early after wood inoculation. Close association between extracellular fibrils and wood cell walls was observed at both early and advanced stages of wood alteration. Fungal sheaths were often seen deep in host cell walls, sometimes enclosing residual wood fragments. Specific gold probes were used to investigate the chemical nature of R. lignosus sheaths. While labeling of chitin, pectin, β-1,4- and β-1,3-glucans, β-glucosides, galactosamine, mannose, sialic acid, RNA, fucose, and fimbrial proteins over fungal sheaths did not succeed, galactose residues and laccase (a fungal phenoloxidase) were found to be present. The positive reaction of sheaths with the PATAg test indicates that polysaccharides such as β-1,6-glucans are important components. Our data suggest that extracellular sheaths produced by R. lignosus during host cell colonization play an important role in wood degradation. Transportation of lignin-degrading enzymes by extracellular fibrils indicates that alteration of plant polymers may occur within fungal sheaths. It is also proposed that R. lignosus sheaths may be involved in recognition mechanisms in fungal cell-wood surface interactions.  相似文献   

12.
Chitinase and β-1,3-glucanase purified from pea pods acted synergistically in the degradation of fungal cell walls. The antifungal potential of the two enzymes was studied directly by adding protein preparations to paper discs placed on agar plates containing germinated fungal spores. Protein extracts from pea pods infected with Fusarium solani f.sp. phaseoli, which contained high activities of chitinase and β-1,3-glucanase, inhibited growth of 15 out of 18 fungi tested. Protein extracts from uninfected pea pods, which contained low activities of chitinase and β-1,3-glucanase, did not inhibit fungal growth. Purified chitinase and β-1,3-glucanase, tested individually, did not inhibit growth of most of the test fungi. Only Trichoderma viride was inhibited by chitinase alone, and only Fusarium solani f.sp. pisi was inhibited by β-1,3-glucanase alone. However, combinations of purified chitinase and β-1,3-glucanase inhibited all fungi tested as effectively as crude protein extracts containing the same enzyme activities. The pea pathogen, Fusarium solani f.sp. pisi, and the nonpathogen of peas, Fusarium solani f.sp. phaseoli, were similarly strongly inhibited by chitinase and β-1,3-glucanase, indicating that the differential pathogenicity of the two fungi is not due to differential sensitivity to the pea enzymes. Inhibition of fungal growth was caused by the lysis of the hyphal tips.  相似文献   

13.
The Gram-positive bacterium Cellulomonas fimi produces a large array of carbohydrate-active enzymes. Analysis of the collection of carbohydrate-active enzymes from the recent genome sequence of C. fimi ATCC 484 shows a large number of uncharacterized genes for glycoside hydrolase (GH) enzymes potentially involved in biomass utilization. To investigate the enzymatic activity of potential β-glucosidases in C. fimi, genes encoding several GH3 enzymes and one GH1 enzyme were cloned and recombinant proteins were expressed in Escherichia coli. Biochemical analysis of these proteins revealed that the enzymes exhibited different substrate specificities for para-nitrophenol-linked substrates (pNP), disaccharides, and oligosaccharides. Celf_2726 encoded a bifunctional enzyme with β-d-xylopyranosidase and α-l-arabinofuranosidase activities, based on pNP-linked substrates (CfXyl3A). Celf_0140 encoded a β-d-glucosidase with activity on β-1,3- and β-1,6-linked glucosyl disaccharides as well as pNP-β-Glc (CfBgl3A). Celf_0468 encoded a β-d-glucosidase with hydrolysis of pNP-β-Glc and hydrolysis/transglycosylation activities only on β-1,6-linked glucosyl disaccharide (CfBgl3B). Celf_3372 encoded a GH3 family member with broad aryl-β-d-glycosidase substrate specificity. Celf_2783 encoded the GH1 family member (CfBgl1), which was found to hydrolyze pNP-β-Glc/Fuc/Gal, as well as cellotetraose and cellopentaose. CfBgl1 also had good activity on β-1,2- and β-1,3-linked disaccharides but had only very weak activity on β-1,4/6-linked glucose.  相似文献   

14.
The biocontrol agent Trichoderma harzianum IMI206040 secretes β-1,3-glucanases in the presence of different glucose polymers and fungal cell walls. The level of β-1,3-glucanase activity secreted was found to be proportional to the amount of glucan present in the inducer. The fungus produces at least seven extracellular β-1,3-glucanases upon induction with laminarin, a soluble β-1,3-glucan. The molecular weights of five of these enzymes fall in the range from 60,000 to 80,000, and their pIs are 5.0 to 6.8. In addition, a 35-kDa protein with a pI of 5.5 and a 39-kDa protein are also secreted. Glucose appears to inhibit the formation of all of the inducible β-1,3-glucanases detected. A 77-kDa glucanase was partially purified from the laminarin culture filtrate. This enzyme is glycosylated and belongs to the exo-β-1,3-glucanase group. The properties of this complex group of enzymes suggest that the enzymes might play different roles in host cell wall lysis during mycoparasitism.  相似文献   

15.
Biosynthesis of glucans occurred in cell-free fractions isolated from onion stem (Allium cepa L.) enriched in either dictyosomes or plasma membranes. β-1,3- and β-1, 4-Glucans were synthesized in differing proportions and at different rates as the concentration of uridine diphosphoglucose or the proportion of dictyosomes or plasma membrane varied. At low (1.5 μm) UDP-glucose concentrations synthesis of alkali-insoluble glucan was correlated with abundance of dicytosomes; most of the substrate utilized by plasma membrane was for glycolipid synthesis. At high (1 mm) UDP-glucose concentration, the synthesis of alkali-insoluble glucans correlated with the abundance of plasma membrane. Substrate enhancement of β-1, 4-glucan synthesis in dictyosome fractions was less than proportional to increases in substrate concentration. In contrast, β-1, 4-glucan synthesis by plasma membrane was more than proportionately increased. At high substrate concentrations the synthesis of β-1, 3-glucans predominated in both dictyosome and plasma membrane fractions. The results show that the capacity to synthesize glucans resides in both Golgi apparatus and plasma membranes of onion stem, but that the plasma membrane has the greatest capacity for synthesis of alkali-insoluble glucans at high UDP-glucose concentrations.  相似文献   

16.
17.
A bacterial glucoamylase was purified from the anaerobic thermophilic bacterium Clostridium thermosaccharolyticum and characterized. The enzyme, which was purified 63-fold, with a yield of 36%, consisted of a single subunit with an apparent molecular mass of 75 kDa. The purified enzyme was able to attack α-1,4- and α-1,6-glycosidic linkages in various α-glucans, liberating glucose with a β-anomeric configuration. The purified glucoamylase, which was optimally active at 70°C and pH 5.0, attacked preferentially polysaccharides such as starch, glycogen, amylopectin, and maltodextrin. The velocity of oligosaccharide hydrolysis decreased with a decrease in the size of the substrate. The Km values for starch and maltose were 18 mg/ml and 20 mM, respectively. Enzyme activity was not significantly influenced by Ca2+, EDTA, or α- or β-cyclodextrins.  相似文献   

18.
19.
Bulone V  Girard V  Fèvre M 《Plant physiology》1990,94(4):1748-1755
Enriched 1,3-β-glucan and 1,4-β-glucan synthase fractions from the fungus Saprolegnia were isolated by rate zonal centrifugation on glycerol gradient. Purification was improved by entrapment of the enzymes in their reaction product, i.e. microfibrillar glucans. 1,3-β-Glucan synthases were separated from 1,4-β-glucan synthases following resuspension of entrapped enzymes. Sodium dodecylsulfate-polyacrylamide gel electrophoresis indicated that 1,3-β-glucan and 1,4-β-glucan synthases may have a different polypeptide composition because they were enriched for different protein subunits (34, 48, and 50 kD for the 1,3-β-glucan synthase and 60 kD for the 1,4-β-glucan synthase).  相似文献   

20.
Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号