首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

2.
Adventitious root formation (ARF) was studied in woody leaf bud cuttings of Ficus pumila L., creeping fig. Juvenile cuttings rooted easily, whereas only mature cuttings treated with indole-3-butyric acid (IBA) attained any rooting success. In the rooting process, both juvenile and mature material exhibited dedifferentiation of phloem ray parenchyma, root initial formation, primordia differentiation, and root elongation. The early stages of adventitious rooting were most critical since few primordia were observed in mature controls. The stages leading up to root primordia differentiation and elongation occurred more rapidly in IBA-treated juvenile vs. mature cuttings; however, time differences in both types between first observable roots and maximum rooting were comparable. Root primordia differentiated from basal callus of some cuttings, but neither these nor the few primordia in mature controls elongated into well-developed roots. Anatomical differences between the juvenile and mature material did not account for rooting disparity, nor did presence of perivascular fibers, sclereids, and laticifers retard rooting.  相似文献   

3.
A lack of competence to form adventitious roots by cuttings or explants in vitro occurs routinely and is an obstacle for the clonal propagation and rapid fixation of elite genotypes. Adventitious rooting is known to be a quantitative genetic trait. We performed a proteomic analysis of Arabidopsis (Arabidopsis thaliana) mutants affected in their ability to develop adventitious roots in order to identify associated molecular markers that could be used to select genotypes for their rooting ability and/or to get further insight into the molecular mechanisms controlling adventitious rooting. Comparison of two-dimensional gel electrophoresis protein profiles resulted in the identification of 11 proteins whose abundance could be either positively or negatively correlated with endogenous auxin content, the number of adventitious root primordia, and/or the number of mature adventitious roots. One protein was negatively correlated only to the number of root primordia and two were negatively correlated to the number of mature adventitious roots. Two putative chaperone proteins were positively correlated only to the number of primordia, and, interestingly, three auxin-inducible GH3-like proteins were positively correlated with the number of mature adventitious roots. The others were correlated with more than one parameter. The 11 proteins are predicted to be involved in different biological processes, including the regulation of auxin homeostasis and light-associated metabolic pathways. The results identify regulatory pathways associated with adventitious root formation and represent valuable markers that might be used for the future identification of genotypes with better rooting abilities.  相似文献   

4.
A micropropagation protocol based on axillary bud proliferation has been developed from mature Lagerstromia parviflora adult tree. Nodal segments cultured on woody plant medium supplemented with 5.0 microl. BAP and 0.25 microm IAA gave maximum (86.9%) morphogenetic response. Proliferated shoots (10.7 per explants) were elongated to 3.9 cm within 6 weeks. In vitro produced micro-shoots were subjected to an IBA treatment (500 ppm for 2 min. dip) and placed under misting conditions for rooting. Misting beds were prepared with sand: soil (3:1) for 80.6% rooting and was acclimatized. Shoot length seems to be important to induce adventitious roots. The highest (91.7%) rooting was recorded on shoots ranging a length between 3.1-4.0 cm. Rooted and hardened plants were later transferred to poly bags and maintained in shadenet house. The protocol has the realizes capacity to produce 260 plants from a single explants within 10 months multiplication cycle.  相似文献   

5.
以花生品种‘粤油7号’6~8 d龄幼叶为外植体进行植株再生研究。结果表明,外植体在MS+0.6 mg/L NAA+8 mg/L 6-BA+1 mg/L AgNO3+3 mg/L Gln培养基上,诱导不定芽效果好,经两次继代培养出芽率达81.03%,每个外植体平均出芽数达5.79个。经伸长培养基MS+2 mg/L 6-BA+4 mg/L GA3培养,不定芽伸长长度达1.0~2.0 cm。试管苗在培养基1/2 MS+0.5 mg/L NAA+3 mg/L IBA上生根率达86.15%,不定根粗而长,有侧根,移栽成活率达90%,结实率100%。  相似文献   

6.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

7.
大花萱草组培快繁体系的研究   总被引:6,自引:0,他引:6  
以大花萱草的6个品种为试材,主要研究了其组织培养中的激素配比、外植体类型、基因型以及不定芽的生根条件。结果表明:适合于大花萱草紫蝶的最佳愈伤组织及不定芽诱导培养基为MS+1 mg·L-1 6-BA+0.1 mg·L-1 NAA,出愈率、分化率和平均出芽数分别为63.33%、91.11%和5.86;但是,上述指标在基因型间表现出差异;花茎是诱导不定芽的最佳外植体;1/2MS+0.2 mg·L-1 NAA是紫蝶较适宜的生根培养基,生根率81.11%,平均生根数6.08;本实验建立了3个品种的再生体系,平均出芽数均在4个以上,其中“金娃娃”最高,是6.88。  相似文献   

8.
Efficient plant regeneration through somatic embryogenesis was established for safflower (Carthamus tinctorius L.) cv. NARI-6. Embryogenic calli were induced from 10 to 17-d-old cotyledon and leaf explants from in vitro seedlings. High frequency (94.3 %) embryogenic callus was obtained from cotyledon explants cultured on Murashige and Skoog’s germination (MSG) basal medium supplemented with thidiazuron, 2-isopentenyladenine and indole-3-butyric acid. Primary, secondary and cyclic somatic embryos were formed from embryogenic calli in a different media free of plant growth regulators, however, 100 % cyclic somatic embryogenesis was obtained from cotyledon derived embryogenic calli cultured on MSG. Somatic embryos matured and germinated in quarter-strength MSG medium supplemented with gibberellic acid. Cotyledons with root poles or non root poles were converted to normal plantlets and produced adventitious roots in rooting medium. Rooted plants were acclimatized and successfully transferred to the field.  相似文献   

9.
Roots of Ophiorrhiza prostrata D. Don serve as a rich source of camptothecin (CPT), an anticancer drug. Because of the large-scale collection of its roots, the plant has become a threatened species. The present study accomplishes the induction of adventitious roots as a means for the production of CPT as well as for the large-scale propagation of this anticancer drug plant using leaf and internode explants. The biomass yield and CPT content of adventitious roots induced from different explants were compared to roots developed on ex vitro rooted stem cuttings. Adventitious roots were produced on half-strength Murashige and Skoog (MS) medium supplemented with 10.74 μM α-naphthaleneacetic acid and 2.32 μM kinetin at mean fresh weights of 0.753, 0.739 and 0.748 g roots from leaf, internode and shoot, respectively. CPT yield from in vitro derived roots after 50, 80 and 120 days of incubation (0.028, 0.06 and 0.1% dry weight, respectively) was not significantly different from those harvested at the same age from ex vitro rooted (0.03, 0.06 and 0.13%, respectively) stem cuttings. CPT from subcultured roots derived from solid (0.08%) medium was lower than from suspension culture medium (0.12%). Subsequent cultures of the adventitious roots showed a stable production of CPT (0.16%). The yield of CPT from 360-day-old plant-derived roots was 0.19%. Elicitation using methyl jasmonate and acetyl salicylic acid exhibited no enhancement in CPT yield. In vitro propagation through direct shoot regeneration was achieved from the adventitious roots upon transfer to MS medium with 8.87 μM N 6-benzyladenine (BA) and 2.46 μM indole-3-butyric acid (IBA) with a mean of 21.2 shoots per culture in 50 days. The shoots upon subculture on medium having the same level of BA and IBA underwent rapid proliferation. The shoots transferred to field conditions after in vitro rooting exhibited 95% survival. Adventitious root induction, from leaf and internode explants, enables the feasible production of CPT as well as the large-scale rapid propagation of this species which can safeguard it from extinction.  相似文献   

10.
An efficient propagation system via somatic embryogenesis and shoot organogenesis and plant regeneration system for endangered species Primulina tabacum Hance was established. Thidiazuron (TDZ) was the key plant growth regulator for inducing somatic embryogenesis and kinetin (KIN) and 6-benzylaminopurine (BAP) were the key cytokinins for inducing shoot organogenesis from leaf explants. TDZ combined with BAP or KIN in the induction Murashige and Skoog medium induced both somatic embryos and adventitious shoots. Leaf explants with abaxial site in contact with the medium induced less somatic embryos or adventitious shoots compared to inversely placed leaf explants and the optimum pH was 6.5–7.0. Secondary somatic embryos or adventitious shoot could be induced from primary somatic embryos using TDZ and BAP. Shoots developed adventitious roots on rooting medium containing 0.5 μM indole-3-butyric acid and 0.2 % activated carbon. Over 90 % of plantlets survived following acclimatization and transfer to potting mixture (sand:Vermiculite:limestone; 1:2:1).  相似文献   

11.
Nodal segements were taken from juvenile shoots of mature 100 year-old trees of saucer magnolia (Magnolia x soulangiana Soul.-Bod.) and cultured on Standardi and Catalano medium supplemented with 1.33 μmol·dm−3 BA, 0.54 μmol·dm−3 NAA, 58 μmol·dm−3 sucrose and 6.0 g·l−1 agar-agar. After 8 weeks, separated shoots were transferred to rooting medium with half-strength macronutrients (basal medium) supplemented with 0.3% activated charcoal and one of carbohydrates: arabinose, cellulose, fructose, galactose, glucose, lactose, mannose, rhamnose, ribose, sorbose, sucrose or xylose at 20 g·dm−3 and 7.0 g·dm−3 agar-agar. After 13 weeks of culture, shoot number, fresh and dry weight of shoots and roots, total root length and number of roots/per shoot were recorded. Percentages of rooted shoots were calculated. Fructose, mannose and xylose were the most effective carbon source on shoot proliferation followed by sucrose. The rooting response was induced by cellulose and xylose. Arabinose, rhamnose and sorbose inhibited root formation. The number of adventitious roots produced per shoot was stimulated by cellulose and xylose. Total biomass (shoot plus roots) of the plantlets was the highest at fructose and cellulose.  相似文献   

12.
Axillary buds sampled from a mature 27-year-old Cornus mas cv. Macrocarpa were grown in vitro on modified woody plant medium (WPM). Adventitious rooting performance of microshoots was assayed on half-strength WPM supplemented with 1-naphthaleneacetic acid (NAA) or indole-3-butyric acid (IBA) under various pH. NAA induced significantly higher rooting frequencies than IBA. The pH of 6.8 inhibited rooting, and differentiated roots were extremely thick and fragile. The highest rooting frequency was recorded on half-strength WPM supplemented with 5.37 µM NAA at the pH value adjusted to 6.2 (73 % of rooted shoots). In the presence of IBA, the formation of adventitious roots was observed only in the basal part of the microshoot dipped into rooting medium. In the case of NAA, however, adventitious roots arose also from the parts of microshoots that were not in contact with medium. The growth of aerial roots was always positively gravitropic. The nuclear microsatellite Cf-G17 gave a monomorphic fingerprinting pattern across the mother shrub and micropropagated plantlets. Acclimatized plants did not show any visually detectable morphological variation and the aerial adventitious root formation was no longer observed.  相似文献   

13.
14.
Strigolactones suppress adventitious rooting in Arabidopsis and pea   总被引:2,自引:0,他引:2  
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.  相似文献   

15.
陆玉建  张韩杰  韩文瑜  沈志强 《广西植物》2016,36(12):1439-1444
紫茉莉(Mirabilis jalapa)观赏价值较高,是一种重要的污染修复植物.组织培养技术为植物品种改良和选育的重要途径,但紫茉莉离体快繁方面的研究尚未见有相关报道.该研究以紫茉莉叶片和茎段为外植体,通过观察和统计外植体愈伤组织和不定芽的诱导情况,分析不同植物生长物质对紫茉莉植株再生的影响.结果表明:紫茉莉带芽茎段比较适合丛生芽的诱导,当带芽茎段在MS+1.0 mg·L-16-BA+1.5 mg·L-1 KT+1.0 mg·L-1 NAA+0.05 mg·L-1 TDZ培养基中培养时,不定芽的增殖系数较高.无论是MS或1/2MS培养基,都可诱导不定根的产生,其中生根效果较好的培养基为1/2 MS+0.5 mg·L-1 NAA.该研究结果探索了紫茉莉组织培养的最适条件,根据愈伤组织诱导率和不定芽的增殖系数筛选出了适宜不定芽诱导的培养基类型,根据不定芽生根情况确定了最佳的生根诱导培养基,为建立紫茉莉高效稳定的再生和遗传转化体系奠定了基础.  相似文献   

16.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

17.
The effect of radiation quality (350 – 740 nm) and darkness (D) on in vitro rooting, and chemical composition of the peach rootstock GF 677 was studied. Shoot explants were exposed for four weeks to cool white (control) (W), red (R), blue (B), green (G) or yellow (Y) radiation from fluorescent tubes. Some of the explants were kept in D during the rooting stage and others were maintained only for the first 2- or 4-d under R, B, G, Y or D, and subsequently were transferred to W. W was the most effective radiation source for adventitious root formation of GF 677 explants. Rooting was inhibited in those plants that remained in continuous D, and R reduced root growth in all treatments. The 2- or 4-d exposure to D, Y or B followed by W helped adventitious root development similarly as did W. G significantly increased Fe concentration in roots.  相似文献   

18.
The present study investigated the effect of ferulic acid (FA; 0–1000 µM) on early growth, and rhizogenesis in mung bean (Vigna radiata) hypocotyls and associated biochemical changes. FA severely affected the radicle elongation and number of secondary roots after 72 h. The root and shoot length, number and length of secondary roots, and seedling dry weight of one-week-old seedlings of mung bean were decreased by 64%. The rooting potential (percent rooting, number and length of adventitious roots) of mung bean hypocotyls under in vitro conditions was significantly inhibited in response to 1–100 µM FA. At 1000 µM there was complete cessation of rooting. FA caused a reduction in the contents of water-soluble proteins and endogenous total phenolics, whereas the activities of proteases, peroxidases, and polyphenol peroxidases increased. The study concludes that FA inhibits root growth and development, and in vitro rooting process in mung bean by interfering with biochemical processes that are crucial for root formation.  相似文献   

19.

Background

The change from juvenile to mature phase in woody plants is often accompanied by a gradual loss of rooting ability, as well as by reduced microRNA (miR) 156 and increased miR172 expression.

Results

We characterized the population of miRNAs of Eucalyptus grandis and compared the gradual reduction in miR156 and increase in miR172 expression during development to the loss of rooting ability. Forty known and eight novel miRNAs were discovered and their predicted targets are listed. The expression pattern of nine miRNAs was determined during adventitious root formation in juvenile and mature cuttings. While the expression levels of miR156 and miR172 were inverse in juvenile and mature tissues, no mutual relationship was found between high miR156 expression and rooting ability, or high miR172 expression and loss of rooting ability. This is shown both in E. grandis and in E. brachyphylla, in which explants that underwent rejuvenation in tissue culture conditions were also examined.

Conclusions

It is suggested that in these Eucalyptus species, there is no correlation between the switch of miR156 with miR172 expression in the stems and the loss of rooting ability.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-524) contains supplementary material, which is available to authorized users.  相似文献   

20.
An attempt was made to induce rooting from single node cuttings of Camellia sinensis var. TV-20 under controlled conditions and study its biochemical changes during rooting. The nodal cuttings were pretreated with different concentrations of IAA, NAA and IBA and kept in a growth chamber (25 ±2 °C, 16 h photoperiod (55 μ mol m−2 s−1) with cool, white fluorescent lamps and 65% relative humidity) for 12 h. Among the three auxins used for pretreatment, IBA showed more positive response on rooting as compared to IAA and NAA within 2 weeks of transfer to potting medium. Among four concentrations of IBA tested, 75 ppm gave maximum percentage of rooting, number of roots and root length. Therefore, IBA was used further in experiments for biochemical investigation. The adventitious rooting was obtained in three distinct phases i.e. induction (0–12 days), initiation (12–14 days) and expression (14–18 days). IAA-oxidase activity of IBA-treated cuttings increased slightly as compared to control. The activity was found to decrease during induction and initiation phases and increase during expression phase. The peroxidase activity in IBA-treated cuttings increased up to initiation phase and declined at the expression phase. Polyphenoloxidase activity increased both in IBA-treated and control cuttings during induction and initiation phase but declined slowly during expression phase. Total phenolic content was higher in IBA-treated cuttings, particularly in initiation and expression phases and it also correlated with peroxidase activity. Phenolics might be playing key role for induction of adventitious rooting, and phenolic compounds can be used as rooting enhancer in tea plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号