首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen VI assembly is unique within the collagen superfamily in that the alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains associate intracellularly to form triple helical monomers, and then dimers and tetramers, which are secreted from the cell. Secreted tetramers associate end-to-end to form the distinctive extracellular microfibrils that are found in virtually all connective tissues. Although the precise protein interactions involved in this process are unknown, the N-terminal globular regions, which are composed of multiple copies of von Willebrand factor type A-like domains, are likely to play a critical role in microfibril formation, because they are exposed at both ends of the tetramers. To explore the role of these subdomains in collagen VI intracellular and extracellular assembly, alpha 3(VI) cDNA expression constructs with sequential N-terminal deletions were stably transfected into SaOS-2 cells, producing cell lines that express alpha 3(VI) chains with N-terminal globular domains containing modules N9-N1, N6-N1, N5-N1, N4-N1, N3-N1, or N1, as well as the complete triple helix and C-terminal globular domain (C1-C5). All of these transfected alpha 3(VI) chains were able to associate with endogenous alpha 1(VI) and alpha 2(VI) to form collagen VI monomers, dimers, and tetramers, which were secreted. Importantly, cells that expressed alpha 3(VI) chains containing the N5 subdomain, alpha 3(VI) N9-C5, N6-C5, and N5-C5, formed microfibrils and deposited a collagen VI matrix. In contrast, cells that expressed the shorter alpha 3(VI) chains, N4-C5, N3-C5, and N1-C5, were severely compromised in their ability to form end-to-end tetramer assemblies and failed to deposit a collagen VI matrix. These data demonstrate that the alpha 3(VI) N5 module is critical for microfibril formation, thus identifying a functional role for a specific type A subdomain in collagen VI assembly.  相似文献   

2.
Collagen VI, a microfibrillar protein found in virtually all connective tissues, is composed of three distinct subunits, alpha1(VI), alpha2(VI), and alpha3(VI), which associate intracellularly to form triple helical heterotrimeric monomers then dimers and tetramers. The secreted tetramers associate end-to-end to form beaded microfibrils. Although the basic steps in assembly and the structure of the tetramers and microfibrils are well defined, details of the interacting protein domains involved in assembly are still poorly understood. To explore the role of the C-terminal globular regions in assembly, alpha3(VI) cDNA expression constructs with C-terminal truncations were stably transfected into SaOS-2 cells. Control alpha3(VI) N6-C5 chains with an intact C-terminal globular region (subdomains C1-C5), and truncated alpha3(VI) N6-C1, N6-C2, N6-C3, and N6-C4 chains, all associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, dimers and tetramers, which were secreted. These data demonstrate that subdomains C2-C5 are not required for monomer, dimer or tetramer assembly, and suggest that the important chain selection interactions involve the C1 subdomains. In contrast to tetramers containing control alpha3(VI) N6-C5 chains, tetramers containing truncated alpha3(VI) chains were unable to associate efficiently end-to-end in the medium and did not form a significant extracellular matrix, demonstrating that the alpha3(VI) C5 domain plays a crucial role in collagen VI microfibril assembly. The alpha3(VI) C5 domain is present in the extracellular matrix of SaOS-2 N6-C5 expressing cells and fibroblasts demonstrating that processing of the C-terminal region of the alpha3(VI) chain is not essential for microfibril formation.  相似文献   

3.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

4.
Collagen VI is a component of the extracellular matrix that is able to form structural links with cells. Collagen VI monomers cross-link into tetramers that come together to form long molecular chains known as microfibrils. Collagen VI tetramers are also the most likely candidates for the formation of banded aggregates with an axial periodicity of about 105 nm that are seen in the retinas of people suffering from age-related macular degeneration and Sorsby's fundus dystrophy, in the vitreous of patients with full thickness macular holes and in the intervertebral discs of normal individuals. Here, a protocol is developed to carry out a structural comparison between the microfibrils, which are known to be made of collagen VI tetramers, and the banded aggregates. The comparison shows that the banded aggregates are easily explained as being a lateral assembly of microfibrils, thus supporting the hypothesis that they too are made of collagen VI. Understanding the role played by the collagen VI aggregates in normal and pathological conditions will help to throw light on the pathologies with which they are associated.  相似文献   

5.
Pepsin-generated type VI collagen is a degradation product of GP140   总被引:7,自引:0,他引:7  
A major extracellular matrix glycoprotein, GP140 , synthesized by WI-38 human lung fibroblasts has previously been shown to be collagen-like. A form of GP140 that is related to extracellular matrix GP140 both antigenically and in apparent molecular mass was isolated from human placenta. Types I-VI collagen were isolated from human tissues by limited pepsin digestion, selective salt precipitation, and chromatography. Immunoblot analysis of the collagens and GP140 utilizing affinity-purified polyclonal antiserum directed against extracellular matrix GP140 demonstrated cross-reactivity of antibodies with type VI collagen. Both type VI collagen and matrix GP140 could be digested with bacterial collagenase following reduction with dithiothreitol but were collagenase insensitive under nonreducing conditions, unlike types I-V collagen. Placental and matrix GP140 and type VI collagen were shown to have receptors for 125I-labeled Lens culinaris lectin. Pepsin digestion of WI-38 extracellular matrix GP140 yielded a 64,000-dalton band which co-migrated with subunits of reduced type VI collagen on Coomassie-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, reacted with anti- GP140 antiserum and 125I-labeled L. culinaris lectin, and was collagenase-sensitive only under reducing conditions. CNBr fragmentation of extracellular matrix GP140 , the 64,000-dalton pepsin-resistant peptide of GP140 and type VI collagen followed by immunoblot analysis using anti- GP140 revealed similarities in peptide maps of GP140 and type VI collagen. Our data strongly suggest that GP140 and type VI collagen share characteristics that differ from those of other collagen types and that intermolecular disulfide bonding appears to stabilize these molecules in their native unreduced form, thus conferring collagenase resistance. Finally, the SC1 and SC2 subunits of type VI collagen appear to be generated by pepsin digestion of GP140 .  相似文献   

6.
7.
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the autosomal dominant disorder, Bethlem myopathy. Although three different collagen VI structural mutations have previously been reported, the effect of these mutations on collagen VI assembly, structure, and function is currently unknown. We have characterized a new Bethlem myopathy mutation that results in skipping of COL6A1 exon 14 during pre-mRNA splicing and the deletion of 18 amino acids from the triple helical domain of the alpha1(VI) chain. Sequencing of genomic DNA identified a G to A transition in the +1 position of the splice donor site of intron 14 in one allele. The mutant alpha1(VI) chains associated intracellularly with alpha2(VI) and alpha3(VI) to form disulfide-bonded monomers, but further assembly into dimers and tetramers was prevented, and molecules containing the mutant chain were not secreted. This triple helical deletion thus resulted in production of half the normal amount of collagen VI. To further explore the biosynthetic consequences of collagen VI triple helical deletions, an alpha3(VI) cDNA expression construct containing a 202-amino acid deletion within the triple helix was produced and stably expressed in SaOS-2 cells. The transfected mutant alpha3(VI) chains associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, but dimers and tetramers did not form and the mutant-containing molecules were not secreted. Thus, deletions within the triple helical region of both the alpha1(VI) and alpha3(VI) chains can prevent intracellular dimer and tetramer assembly and secretion. These results provide the first evidence of the biosynthetic consequences of structural collagen VI mutations and suggest that functional protein haploinsufficiency may be a common pathogenic mechanism in Bethlem myopathy.  相似文献   

8.
Connexins are gap junction proteins that form aqueous channels to interconnect adjacent cells. Rat osteoblasts express connexin43 (Cx43), which forms functional gap junctions at the cell surface. We have found that ROS 17/2.8 osteosarcoma cells, UMR 106-01 osteosarcoma cells, and primary rat calvarial osteoblastic cells also express another gap junction protein, Cx46. Cx46 is a major component of plasma membrane gap junctions in lens. In contrast, Cx46 expressed by osteoblastic cells was predominantly localized to an intracellular perinuclear compartment, which appeared to be an aspect of the TGN as determined by immunofluorescence colocalization. Hela cells transfected with rat Cx46 cDNA (Hela/Cx46) assembled Cx46 into functional gap junction channels at the cell surface. Both rat lens and Hela/Cx46 cells expressed 53-kD (nonphosphorylated) and 68-kD (phosphorylated) forms of Cx46; however, only the 53-kD form was produced by osteoblasts. To examine connexin assembly, monomers were resolved from oligomers by sucrose gradient velocity sedimentation analysis of 1% Triton X-100–solubilized extracts. While Cx43 was assembled into multimeric complexes, ROS cells contained only the monomer form of Cx46. In contrast, Cx46 expressed by rat lens and Hela/Cx46 cells was assembled into multimers. These studies suggest that assembly and cell surface expression of two closely related connexins were differentially regulated in the same cell. Furthermore, oligomerization may be required for connexin transport from the TGN to the cell surface.  相似文献   

9.
We have isolated type VI collagen, a transformation-sensitive glycoprotein of the extracellular matrix, in an intact, disulfide-bonded form. The protein contains a 200 kd subunit and two different 140 kd subunits in a stoichiometric ratio. Based on the amount of hydroxyproline and hydroxylysine, the sensitivity to bacterial collagenase and the cross-reactivity with antibodies to pepsin-extracted type VI collagen, we have identified the 200 kd subunit as the alpha 3(VI) chain and the two 140 kd subunits as the alpha 1(VI) and alpha 2(VI) chains. The alpha 3(VI) chain is synthesized by cells in culture as a precursor of 260 kd, while no precursor form of the other two chains could be detected.  相似文献   

10.
Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD) sit at opposite ends of a clinical spectrum caused by mutations in the extracellular matrix protein collagen VI. Bethlem myopathy is relatively mild, and patients remain ambulant in adulthood while many UCMD patients lose ambulation by their teenage years and require respiratory interventions. Dominant and recessive mutations are found across the entire clinical spectrum; however, recessive Bethlem myopathy is rare, and our understanding of the molecular pathology is limited. We studied a patient with Bethlem myopathy. Electron microscopy of his muscle biopsy revealed abnormal mitochondria. We identified a homozygous COL6A2 p.D871N amino acid substitution in the C-terminal C2 A-domain. Mutant α2(VI) chains are unable to associate with α1(VI) and α3(VI) and are degraded by the proteasomal pathway. Some collagen VI is assembled, albeit more slowly than normal, and is secreted. These molecules contain the minor α2(VI) C2a splice form that has an alternative C terminus that does include the mutation. Collagen VI tetramers containing the α2(VI) C2a chain do not assemble efficiently into microfibrils and there is a severe collagen VI deficiency in the extracellular matrix. We expressed wild-type and mutant α2(VI) C2 domains in mammalian cells and showed that while wild-type C2 domains are efficiently secreted, the mutant p.D871N domain is retained in the cell. These studies shed new light on the protein domains important for intracellular and extracellular collagen VI assembly and emphasize the importance of molecular investigations for families with collagen VI disorders to ensure accurate diagnosis and genetic counseling.  相似文献   

11.
The active form of fibronectin is its extracellular matrix form, which allows for the attachment of cells and influences both the growth and migration of cells. The matrix form is assembled by cells; however, many cells are defective in this regard. Several regions within fibronectin have been shown to play a role in matrix assembly by cells. One such region has been localized into the first type III repeat of fibronectin (Chernousov, M. A., F. J. Fogerty, V. E. Koteliansky, and D. F. Mosher. J. Biol. Chem. 266:10851-10858). We have identified this site as a fibronectin-fibronectin binding site and reproduced it as a synthetic peptide. This site is contained in a 14-kD fragment that corresponds to portions of the first two type III repeats. The 14-kD fragment was found to bind to cell monolayers and to inhibit fibronectin matrix assembly. The 14-kD fragment only slightly reduced the binding of fibronectin to cell surfaces but it significantly inhibited the subsequent incorporation of fibronectin into the extracellular matrix. The 14-kD fragment also bound to purified fibronectin and inhibited fibronectin-fibronectin binding. A synthetic 31-amino acid peptide (P1) representing a segment of the 14-kD fragment retained the ability to inhibit fibronectin-fibronectin binding. Peptide P1 specifically bound fibronectin from plasma in affinity chromatography, whereas a column containing another peptide from the 14-kD fragment did not. These results define a fibronectin-fibronectin binding site that appears to promote matrix assembly by allowing the assembly of fibronectin molecules into nascent fibrils. The 14-kD fragment and the P1 peptide that contain this site inhibit matrix assembly by competing for the fibronectin-fibronectin binding.  相似文献   

12.
《The Journal of cell biology》1990,111(6):3177-3188
The NG2 chondroitin sulfate proteoglycan is a membrane-associated molecule of approximately 500 kD with a core glycoprotein of 300 kD. Both the complete proteoglycan and a smaller quantity of the 300-kD core are immunoprecipitable with polyclonal and monoclonal antibodies against purified NG2. From some cell lines, the antibodies coprecipitate NG2 and type VI collagen, the latter appearing on SDS- PAGE as components of 140 and 250 kD under reducing conditions. The immunoprecipitation of type VI collagen does not seem to be due to recognition of the collagen by the antibodies, but rather to binding of the collagen to NG2. Studies on the NG2-type VI collagen complex suggest that binding between the two molecules is mediated by protein- protein interactions rather than by ionic interactions involving the glycosaminoglycans. Immunofluorescence double labeling in frozen sections of embryonic rat shows that NG2 and type VI collagen are colocalized in structures such as the intervertebral discs and arteries of the spinal column. In vitro the two molecules are highly colocalized on the surface of several cell lines. Treatment of these cells resulting in a change in the distribution of NG2 on the cell surface also causes a parallel change in type VI collagen distribution. Our results suggest that cell surface NG2 may mediate cellular interactions with the extracellular matrix by binding to type VI collagen.  相似文献   

13.
Collagen VI is an extracellular protein that most often contains the three genetically distinct polypeptide chains, α1(VI), α2(VI), and α3(VI), although three recently identified chains, α4(VI), α5(VI), and α6(VI), may replace α3(VI) in some situations. Each chain has a triple helix flanked by N- and C-terminal globular domains that share homology with the von Willebrand factor type A (VWA) domains. During biosynthesis, the three chains come together to form triple helical monomers, which then assemble into dimers and tetramers. Tetramers are secreted from the cell and align end-to-end to form microfibrils. The precise molecular mechanisms responsible for assembly are unclear. Mutations in the three collagen VI genes can disrupt collagen VI biosynthesis and matrix organization and are the cause of the inherited disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. We have identified a Ullrich congenital muscular dystrophy patient with compound heterozygous mutations in α2(VI). The first mutation causes skipping of exon 24, and the mRNA is degraded by nonsense-mediated decay. The second mutation is a two-amino acid deletion in the C1 VWA domain. Recombinant C1 domains containing the deletion are insoluble and retained intracellularly, indicating that the mutation has detrimental effects on domain folding and structure. Despite this, mutant α2(VI) chains retain the ability to associate into monomers, dimers, and tetramers. However, we show that secreted mutant tetramers containing structurally abnormal C1 VWA domains are unable to associate further into microfibrils, directly demonstrating the critical importance of a correctly folded α2(VI) C1 domain in microfibril formation.  相似文献   

14.
Monoclonal antibodies were prepared by immunization with whole tissue and were selected for their reactivity with extracellular matrices in tissue immunofluorescence. Two such antibodies were used to isolate the corresponding antigen from pepsin extracts of human placental tissue by immunochromatography. In each case, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the isolated material was composed of four polypeptides of Mr between 57,000 and 85,000 that were disulfide-bonded into a high molecular weight aggregate. Amino acid analyses showed that the isolated material was partly collagenous. The material was shown to be antigenically related to previously isolated peptic fragments of type VI collagen and it shared their unique structure as revealed by electron microscopy. Based on these findings, it was concluded that the isolated material was a form of type VI collagen. In immunofluorescence, the monoclonal antibodies localized type VI collagen throughout the connective tissue and in the extracellular matrix of cultured fibroblasts. Polypeptides presumably comprising the intact form of this collagen were isolated from cultures of metabolically radiolabeled fibroblast cell cultures using the two monoclonal antibodies. The isolated material consisted of two polypeptides of Mr 240,000 and 140,000 that were extensively disulfide cross-linked. Four additional monoclonal antibodies bound the same radioactive polypeptides from fibroblast cultures, but only one of them reacted with the fragments isolated from pepsin-digested placenta. Since all six antibodies were originally selected based on tissue immunofluorescence, and therefore react with the tissue form of the protein, the tissue form appears to be more similar to the polypeptides detected in fibroblast cultures than to the pepsin-resistant fragments. Since these monoclonal antibodies apparently recognize different parts of the molecule, they will be useful for further study of the structure and function of the intact form of type VI collagen.  相似文献   

15.
The collagen framework of the intervertebral disc contains two major fibril-forming collagens, types I and II. Smaller amounts of other types of collagen are also present. On examination of the nature and distribution of these minor collagens within bovine disc tissue, type VI collagen was found to be unusually abundant. It accounted for about 20% of the total collagen in calf nucleus pulposus, and about 5% in the annulus fibrosus. It was discovered by serially digesting disc tissue with chondroitin ABC lyase and Streptomyces hyaluronidase that native covalent polymers of type VI collagen could be extracted. Electron micrographs of this material prepared by rotary shadowing revealed the characteristic dimensions of tetramers and double tetramers of type VI molecules, with their central rods and terminal globular domains. Molecular-sieve column chromatography on agarose under non-reducing non-denaturing conditions gave a series of protein peaks with molecular sizes equivalent to the tetramer, double tetramer and higher multimers. On SDS/polyacrylamide-gel electrophoresis after disulphide cleavage, these fractions of type VI collagen all showed a main band at Mr 140,000 and four lesser bands between Mr 180,000 and 240,000. On electrophoresis without disulphide cleavage in agarose/2.4% polyacrylamide only dimeric (six chains) and tetrameric (12 chains) forms of type VI molecules were present. The ability to extract all the type VI collagen of the tissue in 4 M-guanidinium chloride, and absence of aldehyde-mediated cross-linking residues on direct analysis, showed that, in contrast with most matrix collagens, type VI collagen does not function as a covalently cross-linked structural polymer.  相似文献   

16.
Foetal-bovine nuchal ligament and aorta, together with adult-bovine aorta and pregnant uterus, were extracted under dissociative conditions in the absence and in the presence of a reducing agent. A collagenous glycoprotein of Mr 140000 [designated component 140K(VI)], identified in these extracts as the major periodate/Schiff-positive component, was shown to be related to collagen type VI. Digestion of non-reduced extracts with pepsin yielded periodate/Schiff-positive peptides that, on the basis of their electrophoretic mobilities, amino acid analyses and peptide 'maps', were identical with type VI collagen fragments prepared by standard procedures. It is concluded that collagen type VI occurs in vivo as molecule comprising three chains of Mr 140000 in which the helical domains account for about one-third of each polypeptide. Biosynthetic experiments with nuchal-ligament fibroblasts in culture demonstrated that a bacterial-collagenase-sensitive [3H]fucose-labelled glycoprotein, Mr 140000, was immunoprecipitated from culture medium by a specific antibody to the pepsin-derived form of collagen type VI. This result suggests that the collagenous polypeptides [140K(VI) components] represent the biosynthetic precursors of type VI collagen that do not undergo processing to smaller species before deposition in the extracellular matrix. Analyses of 5M-guanidinium chloride extracts of tissues with markedly different elastin contents and at different stages of development suggested that there was no relationship between collagen type VI and elastic-fibre microfibrils, a conclusion supported by the observation that the immunoprecipitated glycoprotein, Mr 140000, was distinct from the glycoprotein MFPI, Mr 150000, believed to be a constituent of these microfibrils [Sear, Grant & Jackson (1981) Biochem. J. 194, 587-598].  相似文献   

17.
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the dominantly inherited disorder, Bethlem myopathy. Glycine mutations that interrupt the Gly-X-Y repetitive amino acid sequence that forms the characteristic collagen triple helix have been defined in four families; however, the effects of these mutations on collagen VI biosynthesis, assembly, and structure have not been determined. In this study, we examined the consequences of Bethlem myopathy triple helical glycine mutations in the alpha1(VI) and alpha2(VI) chains, as well as engineered alpha3(VI) triple helical glycine mutations. Although the Bethlem myopathy and introduced mutations that are toward the N terminus of the triple helix did not measurably affect collagen VI intracellular monomer, dimer, or tetramer assembly, or secretion, the introduced mutation toward the C terminus of the helix severely impaired association of the mutant alpha3(VI) chain with alpha1(VI) and alpha2(VI). Association of the three chains was not completely prevented, however; and some non-disulfide bonded tetramers were secreted. Examination of the secreted Bethlem myopathy and engineered mutant collagen VI by negative staining electron microscopy revealed the striking finding that in all the cell lines a significant proportion of the tetramers contained a kink in the supercoiled triple helical region. Collagen VI tetramers from all of the mutant cell lines also showed a reduced ability to form microfibrils. These results provide the first evidence of the biosynthetic consequences of collagen VI triple helical glycine mutations and indicate that Bethlem myopathy results not only from the synthesis of reduced amounts of structurally normal protein but also from the presence of mutant collagen VI in the extracellular matrix.  相似文献   

18.
To identify proteins that promote assembly of type VI collagen tetramers or stabilize type VI collagen filaments, a two-hybrid screen of a human placenta library was used and a new extracellular protein discovered. The cDNA sequence of the new protein encodes 541 amino acid residues. This cDNA sequence is identical to EHD4, a recently described member of the EH domain family of proteins. Two mRNAs of 4.4 and 3.0 kilobases were present in human skin fibroblasts and most tissues tested but were most prevalent in the heart. The chromosomal localization of the gene for this new protein was determined to be at 15q14-q15. Three polyclonal peptide antibodies were made against synthetic EHD4 peptides. The affinity-purified antibodies were used in immunofluorescent staining of developing limbs and matrices produced by human skin fibroblasts and mouse NIH3T3 fibroblasts in culture. Embryonic rat limb cartilage was strongly stained throughout development, and cultured fibroblasts deposited an extracellular filamentous network containing EHD4. In non-denaturing extracts of fetal bovine cartilage and in human skin fibroblast culture media, two components of approximately 220 and 158 kDa were observed, which, after reduction, migrated as a 56-kDa component on SDS-polyacrylamide gel electrophoresis. EHD4 is the first extracellular matrix protein described that contains an EH domain.  相似文献   

19.
This paper describes temporal changes in the metabolism and distribution of newly synthesized aggrecan and the organization of the extracellular matrix when explant cultures of articular cartilage maintained in the presence of fetal calf serum were exposed to retinoic acid for varying periods of time. Explant cultures of articular cartilage were incubated with radiolabeled sulfate prior to exposure to retinoic acid. The radiolabeled and chemical aggrecan present in the tissue and appearing in the culture medium was studied kinetically. Changes in the localization of radiolabeled aggrecan within the extracellular matrix were monitored by autoradiography in relation to type VI collagen distribution in the extracellular matrix. In control cultures where tissue levels of aggrecan remain constant the newly synthesized aggrecan remained closely associated with the territorial matrix surrounding the chondrocytes. Exposure of cultures to retinoic acid for the duration of the experiment, resulted in the extensive loss of aggrecan from the tissue and the redistribution of the remaining radiolabeled aggrecan from the chondron and territorial matrix into the inter-territorial matrix. These changes preceded alterations in the organization of type VI collagen in the extracellular matrix that involved the remodeling of the chondron and the appearance of type VI collagen in the inter-territorial matrix; there was also evidence of chondrocyte proliferation and clustering. In cartilage explant cultures exposed to retinoic acid for 24 h there was no loss of aggrecan from the matrix but there was an extensive redistribution of the radiolabeled aggrecan into the inter-territorial matrix. This work shows that maintenance of the structure and organization of the extracellular matrix that comprises the chondron and pericellular microenvironment of chondrocytes in articular cartilage is important for the regulation of the distribution of newly synthesized aggrecan monomers within the tissue.  相似文献   

20.
The distinctive tissue localization of collagen types in typical schwannomas with Antoni type A and B areas was demonstrated immunohistochemically using affinity-purified antibodies against types I, III, IV, V and VI collagen and comparative ultrastructural studies were made on the extracellular matrix components. Antoni type A tissue, which was composed of tightly packed spindle cells with long cytoplasmic processes surrounded by a continuous basement membrane and a few fibrillar components of the extracellular matrix, was almost exclusively immunoreactive for type IV collagen, presumably representing the basement membrane. Verocay bodies, which are organoid structures of Antoni type A tissue, had a variety of more abundant extracellular fibrous components, such as banded collagen fibrils, fibrous long-spacing fibrils and microfibrils. These were positive for type I and III, as well as type IV collagen. In Antoni type B areas, where two types to tumor cells designated Schwann cell-like and fibroblast-like were scattered in large amounts of amorphous extracellular matrix containing microfibrils and thick banded collagen fibrils, type VI collagen as well as types I, III and IV collagen were consistently detected. Type V collagen was localized in dense fibrous tissue areas and around blood vessels. These findings indicate that the differently organized cellular patterns of schwannomas, identified as Antoni types A and B, are characterized not only by the ultrastructural features of the extracellular matrix, but also by the distinctive collagen types produced by neoplastic Schwann cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号