首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host functions for DNA replication of bacteriophage α3, a representative of group A microvirid phages, were studied using dna and rep mutants of Escherichia coli. In dna+ cells, conversion of phage α3 single-stranded DNA (SS) into the double-stranded replicative form (RF) was insensitive to 30–150 μg/ml of chloramphenicol, 200 μg/ml of rifampicin, 50 μg/ml of nalidixic acid, or 200 μg/ml of novobiocin. At 43°C, synthesis of the parental RF was inhibited in dnaG and dnaZ mutants, but not in dnaE and rep strains. Replication of phage α3 progeny RF was prevented by 50 μg/ml of mitomycin C (in hcr+ bacteria), 50 μg/ml of nalidixic acid or 200 μg/ml of novoviocin, but neither by 30 μg/ml of chloramphenicol nor by 200 μg/ml of rifampicin. Besides dnaG and dnaZ gene products, dnaE and rep functions were essential for the progeny RF synthesis. Host factor dependence of α3 was relatively simple and, in contrast with phages øX174 and G4, α3 did not require dnaB and dnaC(D) activities.  相似文献   

2.
The postulate that a stalled/collapsed replication fork will be generated when the replication complex encounters a UV-induced lesion in the template for leading-strand DNA synthesis is based on the model of semi-discontinuous DNA replication. A review of existing data indicates that the semi-discontinuous DNA replication model is supported by data from in vitro studies, while the discontinuous DNA replication model is supported by in vivo studies in Escherichia coli. Until the question of whether DNA replicates discontinuously in one or both strands is clearly resolved, any model building based on either one of the two DNA replication models should be treated with caution.  相似文献   

3.
The mechanism for initiation of eukaryotic DNA replication is highly conserved: the proteins required to initiate replication, the sequence of events leading to initiation, and the regulation of initiation are remarkably similar throughout the eukaryotic kingdom. Nevertheless, there is a liberal attitude when it comes to selecting initiation sites. Differences appear to exist in the composition of replication origins and in the way proteins recognize these origins. In fact, some multicellular eukaryotes (the metazoans) can change the number and locations of initiation sites during animal development, revealing that selection of initiation sites depends on epigenetic as well as genetic parameters. Here we have attempted to summarize our understanding of this process, to identify the similarities and differences between single cell and multicellular eukaryotes, and to examine the extent to which origin recognition proteins and replication origins have been conserved among eukaryotes. Published 2000 Wiley-Liss, Inc.  相似文献   

4.
Occurrences of antibiotic-resistant Escherichia coli in two springs of a karstic system (NW France) providing drinking water were determined to study the role of aquifers in the dissemination of the resistance genes. Water samples were collected during wet and dry periods and after a heavy rainfall event to investigate E. coli density, antibiotic resistance patterns, and occurrences of class 1, 2, and 3 integrons. By observing patterns of the resistant isolates (i.e. number and type of resistances) and their occurrences, we were able to define two resistant subpopulations, introduced in the aquifer via surface water: (1) R1-2, characterized by one or two resistance(s), essentially to chloramphenicol and/or tetracycline (96.5%), was always found during the heavy rainfall event; (2) R3-10, characterized by three or more resistances, mostly resistant to tetracycline (94.1%) and beta-lactams (86%), was found transiently. Class 1 and 2 integrons were detected, mostly in the R3-10 subpopulation for class 1 integrons. The characteristics of these two subpopulations strongly suggest that the contamination originates from pasture runoff for the R1-2 subpopulation and from wastewater treatment plant effluents for the R3-10 subpopulation. These two subpopulations of E. coli could be used as biological indicators to determine the origin of groundwater contamination.  相似文献   

5.
Di Fiore B  Pines J 《Chromosoma》2008,117(4):333-338
Ordered progression through the cell cycle is essential to maintain genomic stability, and fundamental to this is ubiquitin-mediated proteolysis. In particular, the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase destabilises specific regulators at defined times in the cycle to ensure that each round of DNA replication is followed by cell division. Thus, the proper regulation of the APC/C is crucial in each cell cycle. There are several APC/C regulators that restrict its activity to specific cell cycle phases, and amongst these the early mitotic inhibitor 1 (Emi1) protein has recently come to prominence. Emi1 has been proposed to control APC/C in early mitosis; however, recent evidence questions this role. In this review we discuss new evidence that indicates that Emi1 is essential to restrict APC/C activity in interphase and, by doing so, ensure the proper coordination between DNA replication and mitosis.  相似文献   

6.
Obg proteins are universally conserved GTP-binding proteins that are essential for viability in bacteria. Homologs in different organisms are involved in various cellular processes, including DNA replication. The goal of this study was to analyse the structure-function relationship of Escherichia?coli ObgE with regard to DNA replication in general and sensitivity to stalled replication forks in particular. Defined C-terminal chromosomal deletion mutants of obgE were constructed and tested for sensitivity to the replication inhibitor hydroxyurea. The ObgE C-terminal domain was shown to be dispensable for normal growth of E.?coli. However, a region within this domain is involved in the cellular response to replication fork stress. In addition, a mutant obgE over-expression library was constructed by error-prone PCR and screened for increased hydroxyurea sensitivity. ObgE proteins with substitutions L159Q, G163V, P168V, G216A or R237C, located within distinct domains of ObgE, display dominant-negative effects leading to hydroxyurea hypersensitivity when over-expressed. These effects are abolished in strains with a single deletion of the iron transporter TonB or combined deletions the toxin/antitoxin modules RelBE/MazEF, strains both of which have been shown to be involved in a pathway that stimulates hydroxyl radical formation following hydroxyurea treatment. Moreover, the observed dominant-negative effects are lost in the presence of the hydroxyl radical scavenger thiourea. Together, these results indicate involvement of hydroxyl radical toxicity in ObgE-mediated protection against replication fork stress.  相似文献   

7.
8.
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.  相似文献   

9.
Humans and animals are increasingly being subjected to various probiotic formulations with the claim of providing a number of health benefits to the consumer. These formulations usually incorporate bacterial consortia comprising of mostly lactic acid bacteria (LAB). Recent studies have shown that strains found in different regions of the gut are genetically different from each other and may therefore have different abilities to interact with bacteria that they come into contact with. Even LAB show differences in their ability to interact, and further, inhibit growth of pathogenic bacteria in vitro due to individual strain differences. If these results are repeatedly shown to be true in future assessments, an evaluation of bacterial consortia used in probiotic formulations may now be necessary. This may have an impact in the way future probiotic formulations are prepared.  相似文献   

10.
Two highly contrasted images depict genomes: at first sight, genes appear to be distributed randomly along the chromosome. In contrast, their organisation into operons (or pathogenicity islands) suggests that, at least locally, related functions are in physical proximity. Analysis of the codon usage bias in orthologous genes in the genome of bacteria which diverged a long time ago suggested that some physical (architectural) selection pressure organised the distribution of genes along the chromosome. The metabolism of highly reactive species such as sulphur-containing molecules must be compartmentalised to escape the deleterious actions of diffusible reagents such as gases or radicals. We analysed the distribution of sulphur metabolism genes in the genome of Escherichia coli and found a number of them to be clustered into statistically significant islands. Another interesting feature of these genes is that the proteins they encode are significantly deprived of cysteine and methionine residues, as compared to the bulk proteins. We speculate that this clustering is associated to the organisation of sulphur metabolism proteins into islands where the sensitive sulphur-containing molecules are protected from reacting with elements in the environment such as dioxygen, nitric oxide or radicals.  相似文献   

11.
Early models of the regulation of initiation of DNA replication by protein complexes predicted that binding of a replication initiator protein to a replicator region is required for initiation of each DNA replication round, since after the initiation event the replication initiator should dissociate from DNA. It was, therefore, assumed that binding of the replication initiator is a signal for triggering DNA replication. However, more recent investigations have revealed that in many replicons this is not the case. Studies on the regulation of the replication of plasmids derived from bacteriophage lambda demonstrated that, once assembled, the replication complex can be inherited by one of the two daughter plasmid copies after each replication round and may function in subsequent replication rounds. Since this DNA-bound protein complex bears information about specific initiation of DNA replication, this phenomenon has been called "protein inheritance." A similar phenomenon has recently been reported for oriJ-based plasmids. Moreover, the current model of the initiation of DNA replication in the yeast Saccharomyces cerevisiae proposes that the origin recognition complex (ORC) remains bound to one copy of the ori sequence (the ARS region) after initiation of DNA replication. Thus, it seems plausible that protein inheritance is not unique for lambda plasmids, but may be a common phenomenon in the control of DNA replication, at least in microbes.  相似文献   

12.
13.
Summary By using a high field strength DC pulse of 15 kV/cm and a pulse duration of 5 ms for the transfection of E. coli by bacteriophage DNA, we obtained efficiencies of 1.1 × 106 (pfu/g bacteriophage , DNA). This represents a 100-fold improvement over the traditional CaCl2/heat shock method and is a viable alternative to the more costly in vitro packaging of recombinant bacteriophage DNA for the production of cDNA and genomic libraries.  相似文献   

14.
15.
16.
Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types.  相似文献   

17.
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F1, a water-soluble catalytic sector, and Fo, a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of in the ATP synthase from E. coli is discussed.  相似文献   

18.
19.
The Escherichia coli K-12 chromosome encodes at least five proteic toxin-antitoxin (TA) systems. The mazEF and relBE systems have been extensively characterized and were proposed to be general stress response modules. On one hand, mazEF was proposed to act as a programmed cell death system that is triggered by a variety of stresses. On the other hand, relBE and mazEF were proposed to serve as growth modulators that induce a dormancy state during amino acid starvation. These conflicting hypotheses led us to test a possible synergetic effect of the five characterized E. coli TA systems on stress response. We compared the behavior of a wild-type strain and its derivative devoid of the five TA systems under various stress conditions. We were unable to detect TA-dependent programmed cell death under any of these conditions, even under conditions previously reported to induce it. Thus, our results rule out the programmed-cell-death hypothesis. Moreover, the presence of the five TA systems advantaged neither recovery from the different stresses nor cell growth under nutrient-limited conditions in competition experiments. This casts a doubt on whether TA systems significantly influence bacterial fitness and competitiveness during non-steady-state growth conditions.  相似文献   

20.
Initiation of chromosome replication is a key event in the life cycle of any organism. Little is known, however, about the regulatory mechanisms of this vital process. Conventionally, the initiation mechanism of chromosome replication in microorganisms has been studied using plasmids in which an origin of chromosome replication has been cloned, rather than using the chromosome itself. The reason for this is that even bacterial chromosomes are so large that biochemical and genetic manipulations become difficult and cumbersome. Recently, the combination of flow cytometry and genetic methods, in which modifications of the replication origin are systematically introduced onto the chromosome, has made possible detailed studies of the molecular events involved in the control of replication initiation in Escherichia coli . The results indicate that requirements for initiation at the chromosomal origin, oriC , are drastically different from those for initiation at cloned oriC .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号