首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Expression of the histidine operon in Escherichia coli cells in contrast to the one in Salmonella typhimurium is changed proportionally to cells growth rate on the different carbon sources. The specific activity of histidinol-dehydrogenase is repressed by addition of 19 amino acids both in Escherichia coli and Salmonella typhimurium independent of the growth medium used. Using of Escherichia coli and Salmonella typhimurium strains containing the heterologous histidine operons made possible to demonstrate the dependence of the histidine operon metabolic regulation to be determined by the operon itself but not by the specificity of the recipient cells. ppGpp was shown to be a positive regulator of the histidine operon expression in Escherichia coli.  相似文献   

3.
The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambda gtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambda Tn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [14C]fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [14C]fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis.  相似文献   

4.
5.
The tryptophan (trp) operon of Escherichia coli has become the basic reference structure for studies on tryptophan metabolism. Within the past five years the application of recombinant DNA and sequencing methodologies has permitted the characterization of the structural and functional elements in this gene cluster at the molecular level. In this summary report we present the complete nucleotide sequence for the five structural genes of the trp operon of E. coli together with the internal and flanking regions of regulatory information.  相似文献   

6.
7.
We have obtained the entire nucleotide sequence of the penultimate gene of the tryptophan operon, trpB, in Escherichia coli and Salmonella typhimurium. The amino acid sequence deduced for the E. coli gene product is in agreement with earlier, fragmentary protein sequence results. The trpB nucleotide sequences for the two bacterial species are perfectly colinear and show 85% identity. Most of the nucleotide differences found are without consequence for the amino acid sequence, which shows greater than 96% identity. The degree of conservation of both the nucleotide and amino acid sequences is significantly greater than for trpA, the adjacent gene encoding the other subunit of the same enzyme. When synonymous third codon position nucleotide differences are examined, they seem to be distributed at random throughout trpB and trpA, except for one completely conserved 66 basepair long region within trpB.  相似文献   

8.
The histidine operon of Salmonella typhimurium and its fragments were cloned in Escherichia coli cells on a multicopy plasmid. Expression of the cloned genes and histidine production by the variants possessing the hisG mutation which desensibilizes the ATP phosphoribosyl transferase for histidine were studied. Amplification of the complete operon including the hisG gene enables histidine accumulation of 2-3 g/l after 72 hours of fermentation.  相似文献   

9.
The nucleotide sequence of the E. coli glnALG operon has been determined. The glnL (ntrB) and glnG (ntrC) genes present a high homology, at the nucleotide and aminoacid levels, with the corresponding genes of Klebsiella pneumoniae. The predicted aminoacid sequence for glutamine synthetase allowed us to locate some of the enzyme domains. The structure of this operon is discussed.  相似文献   

10.
In this report we present the complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli. This operon contains five genes encoding four of the five enzymes required for the biosynthesis of isoleucine and valine. We identify and describe the coding regions for these five structural genes and the structural and functional features of the flanking and internal regulatory regions of this operon. This new information contributes to a more complete understanding of the overall control of the biosynthesis of isoleucine and valine.  相似文献   

11.
Summary In this paper we report the nucleotide sequence of the hisD gene of Escherichia coli and of the hisIE region of both E. coli and Salmonella typhimurium. The hisD gene codes for a bifunctional enzyme, l-histidinol: NAD+ oxidoreductase, of 434 amino acids with a molecular mass of 46,199 daltons. We established that the hisIE region of both S. typhimurium and E. coli is composed of a single gene and not, as previously believed, of two separate genes. The derived amino acid sequence indicates that the hisIE gene codes for a bifunctional protein of 203 amino acids with an approximate molecular mass of 22,700 daltons. We also determined the nucleotide sequence of a deletion mutant in S. typhimurium which abolishes the hisF and hisI functions but retains the hisE function. We deduced that the mutant produces a chimeric protein fusing the aminoterminal region of the upstream hisF gene to the carboxylterminal domain of the hisIE gene which encodes for the hisE function. In view of these results the structural and functional organization of the histidine operon in enteric bacteria needs to be revised. The operon is composed of only 8 genes and the pathway leading to the biosynthesis of the amino acid requires 11 enzymatic steps.  相似文献   

12.
Periplasmic space in Salmonella typhimurium and Escherichia coli.   总被引:74,自引:0,他引:74  
The volume of the periplasmic space in Escherichia coli and Salmonella typhimurium cells was measured. This space, in cells grown and collected under conditions routinely used in work with these bacteria, was shown to comprise from 20 to 40% of the total cell volume. Further studies were conducted to determine the osmotic relationships between the periplasm, the external milieu, and the cytoplasm. Results showed that there is a Donnan equilibrium between the periplasm and the extracellular fluid, and that the periplasm and cytoplasm are isoosmotic. In minimal salts medium, the osmotic strength of the cell interior was estimated to be approximately 300 mosM, with a net pressure of approximately 3.5 atm being applied to the cell wall. A corollary of these findings was that an electrical potential exists across the outer membrane. This potential was measured by determining the distributions of Na+ and Cl- between the periplasm and the cell exterior. The potential varied with the ionic strength of the medium; for cells in minimal salts medium it was approximately 30 mV, negative inside.  相似文献   

13.
Dailly YP  Bunch P  Clark DP 《Microbios》2000,103(406):179-196
The adhE gene, encoding the fermentative alcohol dehydrogenase, from Salmonella typhimurium (Genbank accession number U68173) was cloned and sequenced. The Salmonella AdhE protein has 619/878 (70%) amino acid residues identical to the AdhE protein of Escherichia coli. Salmonella AdhE was synthesized only anaerobically. It was present in higher amounts when cells were grown on reduced substrates such as sorbitol, instead of glucose. Growth on glucuronate, which generated no net nicotinamide-adenine dinucleotide reduced (NADH) during metabolism, showed the lowest AdhE levels. Analysis of fermentation products by in vivo nuclear magenetic resonance showed that the proportion of ethanol was highest with sorbitol, intermediate with glucose and negligible with glucuronate. The Salmonella enzyme had a lower Michaelis-Menten constant (Km) for alcohol substrates than AdhE of E. coli although both enzymes displayed a similar Km for nicotinamide-adenine dinucleotide (NAD+). Although AdhE of E. coli was inactive with alcohols longer than four carbons, the Salmonella enzyme was still active with alcohols up to eight carbons.  相似文献   

14.
15.
envM genes of Salmonella typhimurium and Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
Conjugation and bacteriophage P1 transduction experiments in Escherichia coli showed that resistance to the antibacterial compound diazaborine is caused by an allelic form of the envM gene. The envM gene from Salmonella typhimurium was cloned and sequenced. It codes for a 27,765-dalton protein. The plasmids carrying this DNA complemented a conditionally lethal envM mutant of E. coli. Recombinant plasmids containing gene envM from a diazaborine-resistant S. typhimurium strain conferred the drug resistance phenotype to susceptible E. coli cells. A guanine-to-adenine exchange in the envM gene changing a Gly codon to a Ser codon was shown to be responsible for the resistance character. Upstream of envM a small gene coding for a 10,445-dalton protein was identified. Incubating a temperature-sensitive E. coli envM mutant at the nonpermissive temperature caused effects on the cells similar to those caused by treatment with diazaborine, i.e., inhibition of fatty acid, phospholipid, and lipopolysaccharide biosynthesis, induction of a 28,000-dalton inner membrane protein, and change in the ratio of the porins OmpC and OmpF.  相似文献   

16.
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review.  相似文献   

17.
18.
The mutB gene of Salmonella typhimurium is involved in a methylation-independent repair pathway specific for A/G or A/C mismatches and is the homolog of the Escherichia coli mutY gene. The mutB gene of S. typhimurium was cloned and sequenced. The isolated mutB clone reduced the mutation rate of the mutB mutant to wild-type levels and also restored A/G mismatch-specific nicking activity, which is defective in mutB extracts. The amino acid sequence encoded by the mutB gene is 91% homologous to that encoded by the E. coli mutY gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号