首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of cAMP that control critical platelet functions are regulated by cGMP-inhibited cAMP phosphodiesterase (PDE3A). We previously showed that millimolar concentrations of the hydrolyzable 8-[(4-bromo-2,3-dioxobutyl)thioadenosine 3',5'-cyclic monophosphate (8-BDB-TcAMP) inactivate PDE3A. We have now synthesized a nonhydrolyzable affinity label to probe the active site of PDE3A. The nonhydrolyzable adenosine 3',5'-cyclic monophosphorothioates, Sp-cAMPS and Rp-cAMPS, function as competitive inhibitors of PDE3A with K(i) = 47.6 and 4400 microM, respectively. We therefore coupled Sp-cAMPS with 1,4-dibromobutanedione to yield (Sp)-adenosine-3',5'-cyclic-S-(4-bromo-2,3-dioxobutyl)monophosphorothioate, [Sp-cAMPS-(BDB)]. Sp-cAMPS-(BDB) inactivates PDE3A in a time-dependent, irreversible reaction with k(max) = 0.0116 min(-1) and K(I) = 10.1 microM. The order of effectiveness of protectants in decreasing the rate of inactivation (with K(d) in microM) is: Sp-cAMPS (24) > Rp-cGMPS (1360), Sp-cGMPS (1460) > GMP (4250), AMP (10600), Rp-cAMPS (22170). These results suggest that the inactivation of PDE3A by Sp-cAMPS-(BDB) is a consequence of reaction at the overlap of the cAMP and cGMP binding regions in the active site.  相似文献   

2.
We previously showed that 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate inactivates cAMP phosphodiesterase (PDE3A); however, millimolar concentrations were needed to inactivate PDE3A because of ongoing hydrolysis. We have now synthesized a nonhydrolyzable reactive cAMP analogue, (S(p))-8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic S-(methyl)monophosphorothioate (S(p)-8-BDB-TcAMPSMe). S(p)-8-BDB-TcAMPSMe inactivates PDE3A in a time-dependent, irreversible manner, exhibiting saturation kinetics with a k(max) of (19.5 +/- 0.3) x 10(-3) min(-1) and a K(I) of 3.5 +/- 0.3 muM. To ascertain whether S(p)-8-BDB-TcAMPSMe reacts in the active site, nonhydrolyzable analogues of the substrate cAMP, or the competitive inhibitor cGMP, were included to protect against the inactivation of PDE3A. The order of effectiveness of protectants in decreasing the rate of inactivation (with K(d) values in micromolar) is as follows: S(p)-cAMPS (18) > R(p)-cGMPS (560) and S(p)-cGMPS (1260) > 5'-AMP (17 660), R(p)-cAMPS (30 110), and 5'-GMP (42 170). We docked S(p)-8-BDB-TcAMPSMe into PDE3A, based on the structural model of PDE3A-cAMP and the kinetic data from site-directed mutants. The S(p)-8-BDB-TcAMPSMe fits into the active site in the model. These results suggest that inactivation of PDE3A by the affinity reagent is a consequence of reaction at the overlap between cAMP and cGMP binding regions in the active site. S(p)-8-BDB-TcAMPSMe has proven to be an effective active site-directed irreversible cAMP affinity label for platelet PDE3A and can be used to identify amino acids in the active site of PDE3A as well as in other cAMP phosphodiesterases.  相似文献   

3.
R F Colman  Y C Huang  M M King  M Erb 《Biochemistry》1984,23(14):3281-3286
Two new adenine nucleotide analogues have been synthesized and characterized: 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-monophosphate and 5'-diphosphate. The bromoketo and dioxobutyl moieties have the ability to react with the nucleophilic side chains of several amino acids, as well as with arginine. 6-[(4-Bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-monophosphate reacts irreversibly with rabbit muscle pyruvate kinase, causing inactivation. Addition of ADP to the reaction mixture (in the presence of Mg2+) markedly decreases the rate of inactivation. Pig heart NAD-dependent isocitrate dehydrogenase is allosterically activated by ADP, which reduces the Km for isocitrate. 6-[(4-Bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate reacts irreversibly with isocitrate dehydrogenase, causing, rapidly, a loss of the ability of ADP to increase the initial velocity of assays conducted at low isocitrate concentrations and, more slowly, inactivation. Addition of ADP to the reaction mixture (in the presence of Mn2+) protects this enzyme against the loss of allosteric activation. It is proposed that the 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenine nucleotides react at the active site of pyruvate kinase and at the ADP activating site of isocitrate dehydrogenase and that these compounds may have general applicability as affinity labels of catalytic and regulatory adenine nucleotide sites in proteins.  相似文献   

4.
There are phosphodiesterase activities in both particulate and supernatant fractions which hydrolyze guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) with an apparent Km of 2-8 muM and with an apparent Km of 44-222 muM. 4-(3-Butoxy-4-methoxybenzyl-2-imidazolidinone (RO20-1724) did not inhibit cGMP phosphodiesterase activity in homogenates of mouse neuroblastoma cells, but markedly inhibited cAMP phosphodiesterase activity. Papaverine and theophylline inhibited both cGMP and cAMP phosphodiesterase activities to about the same extent. The former was more potent than the latter. The specific activity of cGMP phosphodiesterase as a function of protein concentrations first increased and then decreased. The specific activity of cAMP phosphodiesterase decreased under a similar experimental condition.  相似文献   

5.
Effect of cAMP on ciliary function in rabbit tracheal epithelial cells   总被引:7,自引:0,他引:7  
To study the effect of adenosine 3',5'-cyclic monophosphate (cAMP) on respiratory ciliary activity, we measured ciliary beat frequency (CBF) of rabbit tracheal epithelium by a photoelectric method in response to cAMP analogues and agents that can increase endogenous cAMP production. Addition of 8-bromo-cAMP dose dependently enhanced CBF, with the maximal increase and the concentration necessary to produce a half-maximal response (KD) being 31.0 +/- 3.4% (SE) (P less than 0.001) and 3.2 +/- 1.5 x 10(-7) M, respectively. Other structurally dissimilar cAMP analogues dibutyryl cAMP and chlorophenylthio-cAMP likewise caused increases in CBF. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and the adenylate cyclase stimulator forskolin also augmented CBF in a dose-dependent fashion and were accompanied by the increases in intracellular concentrations of cAMP. Ciliary discoordination was not observed in any of the experiments. These results suggest that cAMP may accelerate mucociliary clearance through the activation of ciliary motility and that intracellular cAMP levels appear to be an important determinant for the lung mucociliary transport functions.  相似文献   

6.
S P Batra  R F Colman 《Biochemistry》1984,23(21):4940-4946
Bovine liver glutamate dehydrogenase reacts covalently with the new adenosine analogue 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate with incorporation of about 1 mol of reagent/mol of enzyme subunit. Modified enzyme completely loses its normal ability to be inhibited by high concentrations of reduced diphosphopyridine nucleotide (DPNH) (greater than 100 microM), which binds at a regulatory site distinct from the catalytic site; however, the modified enzyme retains its full activity when assayed at 100 microM DPNH in the absence of allosteric compounds. The enzyme is still activated by ADP, is inhibited by GTP (albeit at higher concentrations), and binds 1.5-2 mol of [14C]GTP/subunit. A plot of initial velocity vs. DPNH concentration for the modified enzyme, in contrast to the native enzyme, followed Michaelis-Menten kinetics. The rate constant (k) for loss of DPNH inhibition (as measured at 0.6 mM DPNH) exhibits a nonlinear dependence on reagent concentration, suggesting a reversible binding of reagent (Kd = 0.19 mM) prior to irreversible modification. At 0.1 mM 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate, k = 0.036 min-1 and is not affected by alpha-ketoglutarate, 100 microM DPNH, or GTP alone but is decreased to 0.0094 min-1 by 5 mM DPNH and essentially to zero by 5 mM DPNH plus 100 microM GTP. Incorporation after incubation with 0.25 mM 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate for 2 h at pH 7.1 is 1.14 mol/mol of subunit in the absence but only 0.24 mol/mol of subunit in the presence of DPNH plus GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
J M Bailey  R F Colman 《Biochemistry》1987,26(21):6858-6869
Two new reactive adenine nucleotide analogues have been synthesized and characterized: 2-[(4-bromo-2,3-dioxobutyl)thio]adenosine 2',5'-bisphosphate (2-BDB-TA-2',5'-DP) and 2-[(3-bromo-2-oxopropyl)thio]adenosine 2',5'-bisphosphate (2-BOP-TA-2',5'-DP). Starting with NADP+, 2'-phospho-adenosine 5'-(diphosphoribose) (PADPR) was generated enzymatically and was converted to PADPR 1-oxide by reaction with m-chloroperoxybenzoic acid. Treatment with NaOH followed by reaction with carbon disulfide yielded 2-thioadenosine 2',5'-bisphosphate (TA-2',5'-DP). Condensation of TA-2',5'-DP with 1,4-dibromobutanedione or 1,3-dibromo-2-propanone gave the final products 2-BDB-TA-2',5'-DP and 2-BOP-TA-2',5'-DP, respectively. The structure of these new reagents was determined by UV, 1H NMR, 31P NMR, and 13C NMR spectroscopy as well as by bromide and phosphorus analysis. Both of these reagents exhibit properties expected for an affinity label of the coenzyme site of NADP+-dependent isocitrate dehydrogenase. With both reagents, biphasic kinetics of inactivation are observed that can be described in terms of a fast initial phase of inactivation resulting in partially active enzyme of 6-7% residual activity, followed by a slower phase leading to total inactivation. The inactivation rate constants for both reagents exhibit a nonlinear dependence on reagent concentration, consistent with the formation of a reversible complex with the enzyme prior to irreversible modification. The enzyme incorporates both reagents to a limited extent and is protected against inactivation by NADP+ and NADPH. The reaction of these new nucleotide analogues with isocitrate dehydrogenase is compared to the much slower inactivation caused by bromoacetone, indicating the importance of the nucleotide moiety in the functioning of the affinity labels. It is likely that 2-BDB-TA-2',5'-DP and 2-BOP-TA-2',5'-DP will have general applicability as affinity labels for other NADP+ binding enzymes.  相似文献   

8.
Wild-type glutamate dehydrogenase (EC 1.4.1.4) from Salmonella typhimurium reacts at 25 degrees C in 0.1 M phosphate buffer, pH 7, with the nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-adenosine 2',5'-bisphosphate (2-BDB-TA 2',5'-DP) to give 78% inactivation. Protection against inactivation was achieved with NADPH, indicating that modification occurred in the region of the coenzyme binding site. After reaction of the enzyme with 2-BDB-TA 2',5'-DP, the dioxo moiety of the bound reagent was reduced with [3H]NaBH4. The radioactive peptide which corresponds to the sequence Leu282-Cys283-Glu284-Ile285-Lys286 was isolated by HPLC from tryptic digests of inactive modified enzyme but was absent in digests of active enzyme modified in the presence of NADPH. Mutant enzyme E284Q was 64% inactived by 2-BDB-TA 2',5'-DP and modification of the corresponding Leu282-Lys286 peptide was found, while neither mutant enzyme C283I nor C283I:E284Q was inactivated by the nucleotide analogue and no corresponding radioactive peptides were found. These results show that cysteine-283 is the target of the reagent and is located near the coenzyme binding site. The nucleotide analogue 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A 2',5'-DP) has also been shown to react with cysteine-283 (L. Haeffner-Gormley et al., 1991, J. Biol. Chem. 266, 5388-5394). However, the predominant form of the Leu282-Lys286 peptide after reaction with 2-BDB-TA 2',5'-DP contained only 0.17 mol tritium/mol leucine, whereas the 2-BDB-T epsilon A 2',5'-DP-modified peptide contained 1.80 mol tritium/mol leucine; these results indicate that the reaction product of 2-BDB-T epsilon A 2',5'-DP retains two reducible carbonyl groups while these are not available in the product of 2-BDB-TA 2',5'-DP. It is suggested that cysteine-283 reacts primarily at a carbonyl group of 2-BDB-TA 2',5'-DP to form a thiohemiacetal derivative, while it reacts at the methylene group of 2-BDB-T epsilon A 2',5'-DP with displacement of bromide. Both nucleotide analogues also yielded, in small amount, a crosslinked peptide containing the sequences 282-286 and 299-333, indicating proximity between these regions in the native structure.  相似文献   

9.
D H Ozturk  R F Colman 《Biochemistry》1991,30(29):7126-7134
The affinity label 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-triphosphate (8-BDB-TA-5'-TP) has been shown to react with bovine liver glutamate dehydrogenase in the region of the GTP-dependent NADH inhibitory site with incorporation of about 1 mol of reagent/mol of subunit [Ozturk, D. H., Safer, D., & Colman, R. F. (1990) Biochemistry 29, 7112-7118]. The modified enzyme was shown to contain only 5 free sulfhydryl groups upon 5,5'-dithiobis (2-nitrobenzoate) titration as compared with 6 in the unmodified enzyme. In the unmodified enzyme digested with trypsin, 6 cysteinyl peptides were detected by high-performance liquid chromatography upon treatment with iodo [3H]acetic acid. In contrast, only 5 (carboxymethyl)cysteinyl peptides were detected in 8-BDB-TA-5'-TP-modified enzyme. When carboxymethylated modified and unmodified enzymes were digested with thermolysin, 6 peptide sequences containing (carboxymethyl)cysteine were obtained in the unmodified enzyme, but only 5 were observed in the modified enzyme. The (carboxymethyl)cysteine which was absent in the modified enzyme was determined to be Cys-319, leading to the conclusion that 8-BDB-TA-5'-TP reacts with Cys-319, thereby preventing it from subsequent reaction with radioactive iodoacetate. It was previously reported that 6-[(4-bromo-2,3-dioxobutyl)thio]-6-deaminoadenosine 5'-diphosphate (6-BDB-TA-5'-DP) modifies Cys-319 in this enzyme [Batra, S. P., & Colman, R. F. (1986) Biochemistry 25, 3508-3515].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In this study the effect of exercise training on the adenosine 3',5'-cyclic monophosphate (cAMP) system of rat adipose tissue has been investigated. The basal amount of cAMP for the exercising rats was 0.179 +/- 0.021 nmol/10(6) cells, the same value as for the controls. Phosphodiesterase activities (low and high Km) remained unaffected as a result of the program of treadmill running. Kinetic constants for the low- and high-Km phosphodiesterases revealed that the affinity of the enzymes for substrate (cAMP) was unaltered by physical training. Finally, ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid, possibly through its effect on calmodulin, stimulated or inhibited (depending on concentration) phosphodiesterase activity in the same direction and to a similar extent in extracts of adipose tissue from runners and controls. Taken together, these data clearly demonstrate the exercise training has no effect on the cAMP system of adipose tissue in male rats.  相似文献   

11.
We examined basal adenosine 3',5'-cyclic monophosphate (cAMP) levels, isoproterenol (ISO)-stimulated cAMP responses, basal cAMP, and guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase (PDE) activities and protein-kinase (PK) activities in trachealis muscle from five Basenji-greyhound (BG) and four greyhound dogs to determine whether the inverse relationship between in vivo and in vitro airway responsiveness could be due to altered cyclic nucleotide metabolism. Basal cAMP levels were not significantly different (PNS) in muscle from BG (11.6 +/- 0.53 pmol/mg protein) and greyhound dogs (10.30 +/- 1.60 pmol/mg protein). The cAMP responses to stimulation with ISO were enhanced in BG compared with greyhound dogs. The low Michaelis constant (1) for Km-cAMP PDE activity (Km = 0.63 microM) was significantly less (P less than 0.005) in BG dogs (1.54 +/- 0.28 pmol.min-1.mg protein-1) than greyhounds (11.76 +/- 2.48). Endogenously active PK activity was significantly greater (P less than 0.005) in BG (54.74 +/- 5.39 pmol.min-1.mg protein-1) than in greyhound dogs (15.50 +/0 2.20). Increases in PK activity with 5 microM cAMP added were not significantly different between BG (14.79 +/- 6.00) and greyhound dogs (7.04 +/- 2.14). Approximately 90% of both endogenous PK activity and cAMP-activated PK activity in BG and greyhound dogs was inhibited by a cAMP-dependent PK inhibitor (PKI'). These data suggest that decreased cyclic nucleotide degradation due to decreased cyclic nucleotide PDE activity with increased PK could account for the in vitro hyporesponsiveness of airway smooth muscle in BG dogs as a protective adaptive mechanism.  相似文献   

12.
Scott SP  Shea PW  Dryer SE 《Biochemistry》2007,46(33):9417-9431
Hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel currents are activated by hyperpolarization and modulated in response to changes in cytosolic adenosine 3',5'-cyclic monophosphate (cAMP) concentrations. A cDNA chimera combining the rat HCN2 cyclic nucleotide binding domain and the DNA binding domain of the cAMP receptor protein (CRP) from E. coli and the histidine tag (HCN2/CRP) was expressed and purified. The construct is capable of forming only non-ligand dependent dimers because the C-linker region of the channel is not present in this construct. The construct binds 8-[[2-[(fluoresceinylthioureido) amino] ethyl] thio] adenosine-3',5'-cyclic monophosphate (8-fluo cAMP) with a Kd of 0.299 microM as determined with a monomer binding model. The Ki values of 20 ligands related to cAMP were measured in order to determine the properties necessary for a ligand to bind to the HCN2 binding domain. This is the first report of cAMP and gunaosine 3',5'-cyclic monophosphate (cGMP) affinities to the HCN2 binding domain being equivalent, even though they modulate the channel with a 10-fold difference in K0.5. Furthermore, the array of ligands measured allows the preference rank order for each purine ring position to be determined: position 1, H > NH2 > O; position 2, NH2 > Cl > H > O; position 6, NH2 > Cl > H > O; and position 8, NH2 > Cl > H > O. Finally, the ability of HCN2/CRP to bind cyclic nucleotide pyrimidine rings at concentrations approximately 1.33 times greater than cAMP suggests that ribofuranose is key for binding.  相似文献   

13.
Effects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation. On the contrary, Br-cAMP is poorly metabolized in renal tubules and induces a fall of flux through glyceraldehyde-3-phosphate dehydrogenase. The contribution of putative extracellular cAMP receptors to the inhibitory Br-cAMP action is doubtful in view of a decline of glucose formation in renal tubules grown in the primary culture supplemented with forskolin. The presented data indicate that in contrast to hepatocytes, in kidney-cortex tubules an increased intracellular cAMP level results in an inhibition of glucose production.  相似文献   

14.
S-Adenosyl-L-homocysteine hydrolase from Dictyostelium discoideum has been purified to homogeneity. It is composed of four subunits, each with a molecular mass of 47,000. In the hydrolysis direction, the enzyme has a pH optimum of 7.5, a Km for S-adenosyl-L-homocysteine (SAH) of 6 microM, and a Vmax of 0.22 mumol min-1 mg-1. In the synthesis direction, the pH optimum is 8.0, the Km for adenosine is 0.4 microM, and the Vmax is 0.30 mumol min-1 mg-1. Although the enzyme binds beta-nicotinamide adenine dinucleotide, as well as adenosine 3',5'-cyclic monophosphate and 2'-deoxyadenosine, these ligands have no effect on enzymatic activity when added to the assay mixture. However, preincubation of SAH hydrolase with NAD+ results in a 25% activation of the enzyme. In addition, this ligand has a striking effect on subunit-subunit interactions, as shown by stabilization of quaternary structure during polyacrylamide gel electrophoresis. Preincubation with cAMP or 2'-deoxyadenosine inactivates the enzyme. Although in both cases the activity is restored upon further incubation with NAD+, we show that inactivation by these two ligands proceeds by different mechanisms. NAD+-reversible inactivation by cAMP and 2'-deoxyadenosine was also observed with the SAH hydrolase from rabbit erythrocytes. Thus, these previously unreported properties of SAH hydrolase also occur with mammalian enzymes and are not restricted to D. discoideum.  相似文献   

15.
Y Goto  T Takeshita  K Sugamura 《FEBS letters》1988,239(2):165-168
We previously established a human T cell line, TPA-Mat, which can proliferate in response to not only interleukin-2 (IL-2), but also phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and phorbol-12,13-dibutyrate (PDBu). The present study demonstrated that the PDBu-dependent growth of TPA-Mat cells was inhibited up to 90% by adenosine 3',5'-cyclic monophosphate (cAMP] raising agents such as forskolin, cholera toxin and 1-methyl-3-isobutyl-xanthine, and cAMP analogues, whereas the IL-2-stimulated TPA-Mat growth was slightly inhibited. These findings suggest that the signal transduction pathway of PDBu-induced growth, which should involve activation of protein kinase C, is sensitive to cAMP, and that it cannot be exactly identical to the signal transduction pathway of Il-2-induced growth in TPA-Mat cells.  相似文献   

16.
Abstract In Escherichia coli , adenosine 3',5'-cyclic monophosphate (cAMP) is excreted into the growth media. Making use of a phosphodiesterase as scavenger of extracellular cAMP we show that: (i) extracellular cAMP does not interfere with cellular functions; (ii) transient accumulation of cAMP, followed by its rapid excretion, elicits a severe repression of catabolic enzymes.  相似文献   

17.
Using intracellular microelectrodes, we investigated whether exogenous dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) or forskolin influenced the electrical effects of tetraethylammonium (TEA) on canine tracheal smooth muscle. We found that 20 mM TEA depolarized airway smooth muscle cells from a resting membrane potential (Em) of -59 +/- 4 mV (mean +/- SD) to -45 +/- 2 mV and caused spontaneous action potentials (AP's) to develop, which were 33 +/- 2 mV in amplitude. These were totally abolished in 0 Ca2+ solution. DBcAMP (1 mM) suppressed the development of this TEA-induced electrical activity and the phasic contractions electrically coupled to it. DBcAMP had no significant effect on Em in the absence of TEA however. Forskolin (1 microM) produced similar effects. Our findings suggest that Ca2+ is the principal ion responsible for the inward current associated with the TEA-induced AP's in airway smooth muscle, and that adenosine 3',5'-cyclic monophosphate may suppress the electrogenesis of this current.  相似文献   

18.
A substantial body of evidence indicates that active transport of ions is important in modulating the resolution process of pulmonary edema. The biochemical regulation of this ion transport mechanism is still under investigation. In this study we evaluated the effect of an adenosine 3',5'-cyclic monophosphate (cAMP) analogue [dibutyryl cAMP (DBcAMP)] and a phosphodiesterase inhibitor (aminophylline) given alone or together on lung liquid and protein clearance. To study lung liquid and protein clearance, we measured the removal of 100 ml of autologous serum from the air spaces of anesthetized and ventilated adult sheep. Either serum alone or serum mixed with 10(-3) M DBcAMP, 10(-3) M or 10(-5) M aminophylline, or 10(-3) M aminophylline plus 10(-3) M DBcAMP was instilled. After 4 h, the residual lung water was 73.5 +/- 8.7 ml when serum alone was instilled and 56.8 +/- 13.6 ml when aminophylline and DBcAMP were given together. Neither aminophylline nor DBcAMP alone increased lung liquid clearance. However, the increase in clearance cannot be explained by an increase in protein clearance or changes in the pulmonary hemodynamics. These data suggest that the cAMP second messenger system can stimulate lung liquid clearance in vivo.  相似文献   

19.
D M Friedland  I Z Ades 《FEBS letters》1985,191(1):117-120
In primary cultures of chick embryo hepatocytes pulse labeled with [35S]methionine, immunochemical analyses indicated that adenosine 3':5'-cyclic monophosphate (cAMP) did not affect either the rate of production or the maturation of delta-aminolevulinate synthase (ALA synthase). In addition, allylisopropylacetamide caused a slight drop in intracellular cAMP while testosterone caused the levels of cAMP to rise to 260% of the basal levels measured in hepatocytes in culture. Thus the results of this study did not indicate a direct short-term role for cAMP in the regulation of production of ALA synthase.  相似文献   

20.
Administration of prednisolone and cholate to rats elevated levels of cAMP (adenosine 3',5'-cyclic monophosphate) by 1.5- to 2.0-fold. Compounds such as prednisolone, hydrocortisone, cholate, and deoxycholate were found to be potent inhibitors of partially purified cAMP phosphodiesterase prepared from rat liver. Kinetic analysis showed that the prednisolone inhibition was noncompetitive with a Ki of 8.9 x 10(-4) M. These results suggest that in addition to increasing DNA-dependent RNA polymerase activity in vivo, a large application of glucocorticoid may incur elevation of intracellular cAMP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号