首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Salmonella DNA was partially digested with EcoRI, and the digest was fractionated to obtain fragments larger than 8 kilobases (kb). These were ligated into EcoRI-cut pBR322, and the mixture was used to transform Salmonella Xyl- cells selecting for ampR xyl+ transformants. A 21- and a 27-kb plasmid were isolated, both of which contained the entire xylose regulon. The xylose regulon was localized to a 6.3-kb segment of a 13.5-kb EcoRI fragment. Subclones were constructed which contained either the genes for D-xylose isomerase and D-xylulokinase or the genes for the D-xylose transport and the D-xylose regulatory factors. The gene order determined by the subcloning experiments is consistent with that determined by genetic mapping. The spots corresponding to D-xylose isomerase and D-xylulokinase subunits were identified in two-dimensional gels of several xylose-induced strains. Each of them had a molecular weight of 45,000 and an isoelectric point of 6.2 +/- 0.1.  相似文献   

7.
Xylose metabolism, a variable phenotype in strains of Lactococcus lactis, was studied and evidence was obtained for the accumulation of mutations that inactivate the xyl operon. The xylose metabolism operon (xylRAB) was sequenced from three strains of lactococci. Fragments of 4.2, 4.2, and 5.4 kb that included the xyl locus were sequenced from L. lactis subsp. lactis B-4449 (formerly Lactobacillus xylosus), L. lactis subsp. lactis IO-1, and L. lactis subsp. lactis 210, respectively. The two environmental isolates, L. lactis B-4449 and L. lactis IO-1, produce active xylose isomerases and xylulokinases and can metabolize xylose. L. lactis 210, a dairy starter culture strain, has neither xylose isomerase nor xylulokinase activity and is Xyl(-). Xylose isomerase and xylulokinase activities are induced by xylose and repressed by glucose in the two Xyl(+) strains. Sequence comparisons revealed a number of point mutations in the xylA, xylB, and xylR genes in L. lactis 210, IO-1, and B-4449. None of these mutations, with the exception of a premature stop codon in xylB, are obviously lethal, since they lie outside of regions recognized as critical for activity. Nevertheless, either cumulatively or because of indirect affects on the structures of catalytic sites, these mutations render some strains of L. lactis unable to metabolize xylose.  相似文献   

8.
Molecular and industrial aspects of glucose isomerase.   总被引:11,自引:0,他引:11       下载免费PDF全文
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.  相似文献   

9.
The Clarke and Carbon bank of Col El - Escherichia coli DNa hybrid plasmids was screened for complementation of d-xylose negative mutants of E. coli. Of several obtained, the smallest, pRM10, was chosen for detailed study. Its size was 16 kilobases (kb) and that of the insert was 9.7 kg. By transformation or F'-mediated conjugation this plasmid complemented mutants of E. coli defective in either D-xylose isomerase or D-xylulose kinase activity, or both. The activity of D-xylulose kinase in E. coli transformants which bear an intact chromosomal gene for this enzyme was greater than that for the host, due to a gene dosage effect. The plasmid also complemented D-xylose negative mutants of Salmonella typhimurium by F'-mediated conjugation between E. coli and S. typhimurium. Salmonella typhimurium mutants complemented were those for D-xylose isomerase and for D-xylulose kinase in addition to pleiotropic D-xylose mutants which were defective in a regulatory gene of the D-xylose operon. In addition, the plasmid complemented the glyS mutation in E. coli and S. typhimurium. The glyS mutant of E. coli was temperature sensitive, indicating that the plasmid carried the structural gene for glycine synthetase. The glyS mutation in E. coli maps at 79 min, as do the xyl genes. The behaviour of the plasmid is consistent with the existence of a d-xylose operon in E. coli. The data also suggest that the plasmid carries three of the genes of this operon, specifically those for D-xylose isomerase, D-xylulose kinase, and a regulatory gene.  相似文献   

10.
11.
A xylose-inducible gene expression vector for Clostridium perfringens was developed. Plasmid pXCH contains a chromosomal region from Clostridium difficile (xylR-P(xy)(lB)): xylR, encoding the xylose repressor, xylO, the xyl operator sequence, and P(xylB), the divergent promoter upstream of xylBA encoding xylulo kinase and xylose isomerase. pXCH allows tightly regulated expression of the chloramphenicol acetyltransferase reporter and the α-toxin genes in response to the inducer concentration. Thus, pXCH could constitute a new valuable genetic tool for study of C. perfringens.  相似文献   

12.
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024-5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids.  相似文献   

13.
In the oligotrophic freshwater bacterium Caulobacter crescentus, D-xylose induces expression of over 50 genes, including the xyl operon, which encodes key enzymes for xylose metabolism. The promoter (P(xylX)) controlling expression of the xyl operon is widely used as a tool for inducible heterologous gene expression in C. crescentus. We show here that P(xylX) and at least one other promoter in the xylose regulon (P(xylE)) are controlled by the CC3065 (xylR) gene product, a LacI-type repressor. Electrophoretic gel mobility shift assays showed that operator binding by XylR is greatly reduced in the presence of D-xylose. The data support the hypothesis that there is a simple regulatory mechanism in which XylR obstructs xylose-inducible promoters in the absence of the sugar; the repressor is induced to release DNA upon binding D-xylose, thereby freeing the promoter for productive interaction with RNA polymerase. XylR also has an effect on glucose metabolism, as xylR mutants exhibit reduced expression of the Entner-Doudoroff operon and their ability to utilize glucose as a sole carbon and energy source is compromised.  相似文献   

14.
Sixty-two wild-type Salmonella typhimurium strains were characterized for their D-xylose enzyme activities. Strains from the xylose strong biogroup synthesized high levels of D-xylose isomerase and D-xylulokinase and transported D-xylose. Strains from the xylose weak biogroup synthesized only low levels of D-xylulokinase and low, or no, levels of D-xylose isomerase and were deficient in the ability to transport D-xylose. These findings are discussed in the light of known phylogenetic relationships among the biotypes of Salm. typhimurium.  相似文献   

15.
A DNA fragment containing the Escherichia coli D-xylose isomerase gene and D-xylulokinase gene had been isolated from an E. coli genomic bank constructed by Clarke and Carbon. The D-xylose isomerase gene coding for the synthesis of an important industrial enzyme, xylose isomerase, was subcloned into a Bacillus-E. coli bifunctional plasmid. It was found that the intact E. coli gene was not expressed in B. subtilis, a host traditionally used to produce industrial enzymes. An attempt was then made to express the E. coli gene in B. subtilis by fusion of the E. coli xylose isomerase structural gene downstream to the promoter of the penicillinase gene isolated from Bacillus licheniformis. Two such fused genes were constructed and they were found able to be expressed in both B. subtilis and E. coli.  相似文献   

16.
Fan L  Zhang Y  Qu W  Wang J  Shao W 《Biotechnology letters》2011,33(3):593-598
Three genes, xylA-like, xylA and xylB, were cloned and sequenced from the chromosome of Thermoanaerobacter ethanolicus JW200. xylA and xylB share an operon and encode xylose isomerase and xylulokinase, respectively. The xylA-like gene locates upstream of xylAB operon and encodes a hypothetical protein that lacks xylose isomerase activity. The xylose isomerase was expressed in Escherichia coli and purified by heat treatment and an ion-exchange chromatography. The enzyme had highest activity at 85°C and pH 7.0, and a half-life for 1 h at 85°C. The K (m) and V (max) values for xylose were 11 mM and 25 U/mg, respectively. The high level of expression, easy purification, and thermostability of the XylA from T. ethanolicus JW200 suggests industrial usefulness.  相似文献   

17.
We have identified and characterized the D-xylose transport system of Lactobacillus pentosus. Uptake of D-xylose was not driven by the proton motive force generated by malolactic fermentation and required D-xylose metabolism. The kinetics of D-xylose transport were indicative of a low-affinity facilitated-diffusion system with an apparent K(m) of 8.5 mM and a V(max) of 23 nmol min(-1) mg of dry weight(-1). In two mutants of L. pentosus defective in the phosphoenolpyruvate:mannose phosphotransferase system, growth on D-xylose was absent due to the lack of D-xylose transport. However, transport of the pentose was not totally abolished in a third mutant, which could be complemented after expression of the L. curvatus manB gene encoding the cytoplasmic EIIB(Man) component of the EII(Man) complex. The EII(Man) complex is also involved in D-xylose transport in L. casei ATCC 393 and L. plantarum 80. These two species could transport and metabolize D-xylose after transformation with plasmids which expressed the D-xylose-catabolizing genes of L. pentosus, xylAB. L. casei and L. plantarum mutants resistant to 2-deoxy-D-glucose were defective in EII(Man) activity and were unable to transport D-xylose when transformed with plasmids containing the xylAB genes. Finally, transport of D-xylose was found to be the rate-limiting step in the growth of L. pentosus and of L. plantarum and L. casei ATCC 393 containing plasmids coding for the D-xylose-catabolic enzymes, since the doubling time of these bacteria on D-xylose was proportional to the level of EII(Man) activity.  相似文献   

18.
19.
20.
Replacement of the native fermentation pathway in Escherichia coli B with a homo-ethanol pathway from Zymomonas mobilis (pdc and adhB genes) resulted in a 30 to 50% increase in growth rate and glycolytic flux during the anaerobic fermentation of xylose. Gene array analysis was used as a tool to investigate differences in expression levels for the 30 genes involved in xylose catabolism in the parent (strain B) and the engineered strain (KO11). Of the 4,290 total open reading frames, only 8% were expressed at a significantly higher level in KO11 (P < 0.05). In contrast, over half of the 30 genes involved in the catabolism of xylose to pyruvate were expressed at 1.5-fold- to 8-fold-higher levels in KO11. For 14 of the 30 genes, higher expression was statistically significant at the 95% confidence level (xylAB, xylE, xylFG, xylR, rpiA, rpiB, pfkA, fbaA, tpiA, gapA, pgk, and pykA) during active fermentation (6, 12, and 24 h). Values at single time points for only four of these genes (eno, fbaA, fbaB, and talA) were higher in strain B than in KO11. The relationship between changes in mRNA (cDNA) levels and changes in specific activities was verified for two genes (xylA and xylB) with good agreement. In KO11, expression levels and activities were threefold higher than in strain B for xylose isomerase (xylA) and twofold higher for xylulokinase (xylB). Increased expression of genes involved in xylose catabolism is proposed as the basis for the increase in growth rate and glycolytic flux in ethanologenic KO11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号