首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative RFLP analysis was for the first time performed for 21 variola virus (VARV) strains of the Russian collection with 20 amplicons covering the total VARV genome. The amplicons were synthesized in the long polymerase chain reaction. A database useful as a reference for identifying VARV strains was generated. VARV strains isolated in different geographical regions were compared and proved to vary mostly in variable genome regions. Each of the dendrograms constructed included three clusters of African, Asian, and VARV-alastrim isolates. The VARV-alastrim isolates differed to the greatest extent from the other strains. VARV strains isolated during an ecdemic variola burst in Moscow (1960) grouped with Asian isolates. Polymorphism of VARV strains was for the first time observed for a single variola burst with a few affected patients.  相似文献   

2.
Comparative RFLP analysis was for the first time performed for 21 variola virus (VARV) strains of the Russian collection with 20 amplicons covering the total VARV genome. The amplicons were synthesized in the long polymerase chain reaction. A database useful as a reference for identifying VARV strains was generated. VARV strains isolated in different geographical regions were compared and proved to vary mostly in variable genome regions. Each of the dendrograms constructed included three clusters of African, Asian, and VARV-alastrim isolates. The VARV-alastrim isolates differed to the greatest extent from the other strains. VARV strains isolated during an ecdemic variola burst in Moscow (1960) grouped with Asian isolates. Polymorphism of VARV strains was for the first time observed for a single variola burst with a few affected patients.  相似文献   

3.
Babkin IV  Shelkunov SN 《Genetika》2008,44(8):1029-1044
Previous restriction fragment length polymorphism analysis divided variola virus (VARV) strains into two subtypes, one of which included West African and South American isolates. This allowed a dating to be introduced for the first time in estimation of the VARV evolution rate. The results were used to analyze the molecular evolution of the total family Poxviridae. Comparisons of the known nucleotide sequences were performed for the extended conserved central genome region in 42 orthopoxvirus strains and for the eight genes of multisubunit RNA polymerase in 65 viruses belonging to various genera of the family Poxviridae. Using the Bayesian dating method, the mutation accumulation rate of poxviruses was estimated at (1.7-8.8) x 10(-6) nucleotide substitutions per site per year. Computations showed that the modem poxvirus genera started diverging from an ancestral virus more than 200 thousand years ago and that an ancestor of the genus Orthopoxvirus emerged 131 +/- 45 thousand years ago. The other genera of mammalian poxviruses with a low GC content diverged approximately 110-90 thousand years ago. The independent evolution of VARV started 3.4 +/- 0.8 thousand years ago. It was shown with the example of VARV and the monkeypox virus (MPXV) that divergent evolution of these orthopoxviruses started and the West African subtypes of VARV and MPXV were formed as geographical conditions changed to allow isolation of West African animals from other African regions.  相似文献   

4.
Previous restriction fragment length polymorphism analysis divided variola virus (VARV) strains into two subtypes, one of which included West African and South American isolates. This allowed a dating to be introduced for the first time in estimation of the VARV evolution rate. The results were used to analyze the molecular evolution of the total family Poxviridae. Comparisons of the known nucleotide sequences were performed for the extended conserved central genome region in 42 orthopoxvirus strains and for the eight genes of multisubunit RNA polymerase in 65 viruses belonging to various genera of the family Poxviridae. Using the Bayesian dating method, the mutation accumulation rate of poxviruses was estimated at (1.7–8.8) × 10?6 nucleotide substitutions per site per year. Computations showed that the modern poxvirus genera started diverging from an ancestral virus more than 200 thousand years ago and that an ancestor of the genus Orthopoxvirus emerged 131 ± 45 thousand years ago. The other genera of mammalian poxviruses with a low GC content diverged approximately 110–90 thousand years ago. The independent evolution of VARV started 3.4 ± 0.8 thousand years ago. It was shown with the example of VARV and the monkeypox virus (MPXV) that divergent evolution of these orthopoxviruses started and the West African subtypes of VARV and MPXV were formed as geographical conditions changed to allow isolation of West African animals from other African regions.  相似文献   

5.
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.  相似文献   

6.
Qiu L  Li Y  Liu Y  Gao Y  Qi Y  Shen J 《Fungal biology》2010,114(5-6):507-513
Many cultivated mushroom strains, such as Pleurotus ostreatus TD300, displayed symptoms of degeneration. A spherical virus POSV and four dsRNA segments were extracted from mycelium of P. ostreatus TD300. POSV had a diameter of 23 nm and encapsidated a 2.5kb dsRNA segment with coat proteins whose molecular weights were 39 kDa and 30 kDa. Four dsRNA segments were 8.2 kb, 2.5 kb, 2.0 kb, and 1.1 kb in size, respectively. The 1.1 kb dsRNA segment often escaped detection. The cDNA and the amino acid sequences of the 8.2 kb dsRNA were homologous to those of RNA-dependent RNA polymerases (RDRP) of ssRNA oyster mushroom spherical virus (OMSV), and contained conserved motifs A to D which were almost identical to those in RDRP of OMSV. The cDNA and amino acid sequences of the 2.5 kb and 2.0 kb dsRNA segments were homologous to that of RDRP and capsid protein of dsRNA virus P. ostreatus virus 1 (PoV1), respectively. In particular, the amino acid sequence of 2.5 kb dsRNA segment had high identity with the conserved motifs A to C in RDRP of PoV1, a Partiviridae virus. After eliminating the viruses in P. ostreatus TD300, the symptoms of degeneration completely disappeared. The results reveal that P. ostreatus TD300 was at least infected by a particle virus POSV, and two naked viruses, one was a dsRNA virus with a 2.0 kb dsRNA segment, the other was an ssRNA virus whose replicating form of genome was an 8.2 kb dsRNA segment. Mycoviruses infection is a causative agent of mushroom strain degeneration.  相似文献   

7.
A detailed restriction map of the genome of Rhodobacter capsulatus SB1003 was constructed recently by using an ordered set of overlapping cosmids. Pulsed-field gel electrophoresis-generated restriction patterns of the chromosomes of 14 other R. capsulatus strains were compared. Two of them, St. Louis and 2.3.1, were chosen for high-resolution alignment of their genomes with that of SB1003. A 1-Mb segment of the R. capsulatus SB1003 cosmid set was used as a source of ordered probes to group cosmids from the other strains. Selected cosmids were linked into one 800-kb contig and two smaller contigs of 100 kb each. EcoRV and BamHI restriction maps of the newly ordered cosmids were constructed by using lambda terminase. Long-range gene order in the new strains was mainly conserved for the regions studied. However, one large genome rearrangement inverted a 470-kb DNA fragment of the St. Louis strain between the rrnA and rrnB operons. A 50-kb deletion covering three SB1003 probes was found in strain 2.3.1 near rrnB. Conservation of about 50% of the positions of restriction sites in all these strains and nearly 80% for the pair 2.3.1- St. Louis made it possible to produce high-resolution alignment of the contiguous 800-kb genome segment. Ten deletions of 2 to 27 kb, one 30-kb inversion, and three translocations were found in this region. Strong clustering of the positions of polymorphic restriction sites was observed. For a 50-kb size interval, two patterns of the distribution of restriction sites were found, one with about 90% and the other with 5 to 30% conservation of sites. This structure may be explained by independent acquisition of these divergent regions from other Rhodobacter strains.  相似文献   

8.
Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.  相似文献   

9.
Since animal models for studying human cytomegalovirus (HCMV) replication in vivo and pathogenesis are not available, severe combined immunodeficiency mice into which human tissues were implanted (SCID-hu mice) provide an alternative and valuable model for such studies. The HCMV clinical isolates, including those of the Toledo strain, replicate to high titers in human tissue implanted into SCID mice; however, the attenuated AD169 strain has completely lost this ability. The major difference between Toledo and AD169 is a 15-kb segment, encoding 19 open reading frames, which is present in all virulent strains but deleted from attenuated strains. This fact suggests that crucial genes required for HCMV replication in vivo are localized to this region. In this study, the importance of this 15-kb segment for HCMV replication in vivo was determined. First, Toledo(BAC) virus (produced from a Toledo bacterial artificial chromosome) and AD169 virus were tested for growth in SCID-hu mice. Toledo(BAC), like Toledo, grew to high titers in implanted human thymus and liver tissues, while AD169 did not. This outcome showed that the Toledo genome propagated in bacteria (Toledo(BAC)) retained its virulence. The 15-kb segment was then deleted from Toledo(BAC), and the resulting virus, Toledo(Delta15kb), was tested for growth in both human foreskin fibroblast (HFF) cells and SCID-hu mice. Toledo(Delta15kb) had a minor growth defect in HFF but completely failed to replicate in human thymus and liver implants. This failure to grow was rescued when the 15-kb region was inserted back into the Toledo(Delta15kb) genome. These results directly demonstrated that the genes located in the 15-kb segment are crucial for HCMV replication in vivo.  相似文献   

10.
The extent and nature of DNA polymorphism in the mutS-rpoS region of the Escherichia coli genome were assessed in 21 strains of enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) and in 6 strains originally isolated from natural populations. The intervening region between mutS and rpoS was amplified by long-range PCR, and the resulting amplicons varied substantially in length (7.8 to 14.2 kb) among pathogenic groups. Restriction maps based on five enzymes and sequence analysis showed that strains of the EPEC 1, EPEC 2, and EHEC 2 groups have a long mutS-rpoS region composed of a approximately 6.0-kb DNA segment found in strain K-12 and a novel DNA segment ( approximately 2.9 kb) located at the 3' end of rpoS. The novel segment contains three genes (yclC, pad1, and slyA) that occur in E. coli O157:H7 and related strains but are not found in K-12 or members of the ECOR group A. Phylogenetic analysis of the common sequences indicates that the long intergenic region is ancestral and at least two separate deletion events gave rise to the shorter regions characteristic of the E. coli O157:H7 and K-12 lineages.  相似文献   

11.
汉坦病毒汉滩型特殊新亚型的发现   总被引:13,自引:0,他引:13  
应用RT-PCR扩增了皖南山区分离株AH09的M和S片段全基因,克隆于T载体,纯化后测定序列。结果AH09株M片段的全基因序列共3625个核苷酸,编码1135个氨基酸;S片段的全基因序列共1724个核苷酸,编码430个氨基酸。M和S片段全基因核苷酸和氨基酸与汉坦病毒各型株的代表株和HTN型毒株的同源性比较表明,AH09株分枝与HTN型接近,与其它各型病毒则相距较远,故确定为HTN型毒株,但AH09株与HTN型毒株的M和S片段全基因序列有差异,其差异分别高达23.6%和20.4%,经种系发生分析,AH09株是迄今为止所发现的HTN型病毒中差异最大的新基因亚型病毒株,AH09株病毒M片段的氨基酸与HTN型相差13.5%至14.8%,而S片段仅相差7%-8.1%,说明AH09毒株的变异主要发生在M片段。而ORF和3‘端的NCR区核苷酸序列分析比较说明,病毒的变异更主要集中在该片段的3‘端的NCR区。  相似文献   

12.
Unlike in vertebrates and RNA viruses, the molecular clock has not been estimated so far for DNA viruses. The extended conserved central region (102 kb) of the orthopoxvirus genome and the DNA polymerase gene (3 kb) were analyzed in viruses representing several genera of the family Poxviridae. Analysis was based on the known dating of the variola virus (VARV) transfer from Western Africa to South America and previous data on the phylogenetic relatedness of modern West African and South American isolates of VARV. The mutation accumulation rate was for the first time estimated for these DNA viruses at (0.9–1.2) × 10?6 substitutions per site per year. It was assumed that poxviruses diverged from an ancestor approximately 500,000 years ago to form the recent species and that the ancestor of the genus Orthopoxvirus emerged approximately 300,000 years ago and gave origin to the modern species approximately 14,000 years ago.  相似文献   

13.
Smallpox caused by the variola virus (VARV) was one of the greatest infectious killers of mankind. Historical records trace back smallpox for at least a millennium while phylogenetic analysis dated the ancestor of VARV circulating in the 20th century into the 19th century. The discrepancy was solved by the detection of distinct VARV sequences first in 17th-century mummies and then in human skeletons dated to the 7th century. The historical records noted marked variability in VARV virulence which scientists tentatively associated with gene losses occurring when broad-host poxviruses narrow their host range to a single host. VARV split from camel and gerbil poxviruses and had no animal reservoir, a prerequisite for its eradication led by WHO. The search for residual pockets of VARV led to the discovery of the monkeypox virus (MPXV); followed by the detection of endemic smallpox-like monkeypox (mpox) disease in Africa. Mpox is caused by less virulent clade 2 MPXV in West Africa and more virulent clade 1 MPXV in Central Africa. Exported clade 2 mpox cases associated with the pet animal trade were observed in 2003 in the USA. In 2022 a world-wide mpox epidemic infecting more than 80,000 people was noted, peaking in August 2022 although waning rapidly. The cases displayed particular epidemiological characteristics affecting nearly exclusively young men having sex with men (MSM). In contrast, mpox in Africa mostly affects children by non-sexual transmission routes possibly from uncharacterized animal reservoirs. While African children show a classical smallpox picture, MSM mpox cases show few mostly anogenital lesions, low-hospitalization rates and 140 fatal cases worldwide. MPXV strains from North America and Europe are closely related, derived from clade 2 African MPXV. Distinct transmission mechanisms are more likely causes for the epidemiological and clinical differences between endemic African cases and the 2022 epidemic cases than viral traits.  相似文献   

14.
Tumor necrosis factor (TNF), a potent proinflammatory and antiviral cytokine, is a critical extracellular immune regulator targeted by poxviruses through the activity of virus-encoded family of TNF-binding proteins (CrmB, CrmC, CrmD, and CrmE). The only TNF-binding protein from variola virus (VARV), the causative agent of smallpox, infecting exclusively humans, is CrmB. Here we have aligned the amino acid sequences of CrmB proteins from 10 VARV, 14 cowpox virus (CPXV), and 22 monkeypox virus (MPXV) strains. Sequence analyses demonstrated a high homology of these proteins. The regions homologous to cd00185 domain of the TNF receptor family, determining the specificity of ligand-receptor binding, were found in the sequences of CrmB proteins. In addition, a comparative analysis of the C-terminal SECRET domain sequences of CrmB proteins was performed. The differences in the amino acid sequences of these domains characteristic of each particular orthopoxvirus species were detected. It was assumed that the species-specific distinctions between the CrmB proteins might underlie the differences in these physicochemical and biological properties. The individual recombinant proteins VARV-CrmB, MPXV-CrmB, and CPXV-CrmB were synthesized in a baculovirus expression system in insect cells and isolated. Purified VARV-CrmB was detectable as a dimer with a molecular weight of 90 kDa, while MPXV- and CPXV-CrmBs, as monomers when fractioned by non-reducing SDS-PAGE. The CrmB proteins of VARV, MPXV, and CPXV differed in the efficiencies of inhibition of the cytotoxic effects of human, mouse, or rabbit TNFs in L929 mouse fibroblast cell line. Testing of CrmBs in the experimental model of LPS-induced shock using SPF BALB/c mice detected a pronounced protective effect of VARV-CrmB. Thus, our data demonstrated the difference in anti-TNF activities of VARV-, MPXV-, and CPXV-CrmBs and efficiency of VARV-CrmB rather than CPXV- or MPXV-CrmBs against LPS-induced mortality in mice.  相似文献   

15.
Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.  相似文献   

16.
Double-stranded RNAs and virus particles were identified in Pleurotus ostreatus strain Shin-Nong in Korea. Isometric virus particles with a diameter of 33 nm were purified, which are similar to other Pleurotus viruses reported previously. This strain contains 5 dsRNAs, 8.0, 2.5, 2.4, 2.0, and 1.8 kb in size. The virus particles contain 2 dsRNAs, designated RNA-1 (2.5 kb), and RNA-2 (2.4 kb) which is a typical pattern of Partitiviridae. A non-encapsidated dsRNA of about 8.0 kb also was identified. Partial cDNA from RNA-1 was cloned, and sequence analysis revealed that this gene codes for RdRp. The comparison of the sequence from partial cDNA clone showed 35% amino acid homology with the C-terminal end of the RdRp gene of Helicobasidum mompa virus and Rosalinia necatrix virus. Specific primers designed from the partial sequences successfully amplified RT-PCR product from the infected mycelium and a single spore culture. We used these primers to determine the pattern of distribution of viruses in spores. Of the 96 different single spore cultures generated from Shin-Nong strain, a specific RT-PCR product was identified in 25 cultures, indicating that about 26% of basidiospores contain viruses.  相似文献   

17.
The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared. The 16S rRNA gene sequences showed less than 1% sequence divergence, and all haloalkane degraders clearly belonged to the genus Rhodococcus. All strains shared a completely conserved dhaA gene, suggesting that the dhaA genes were recently derived from a common ancestor. The genetic organization of the dhaA gene region in each of the haloalkane degraders was examined by hybridization analysis and DNA sequencing. Three different groups could be defined on the basis of the extent of the conserved dhaA segment. The minimal structure present in all strains consisted of a conserved region of 12.5 kb, which included the haloalkane-degradative gene cluster that was previously found in strain NCIMB13064. Plasmids of different sizes were found in all strains. Southern hybridization analysis with a dhaA gene probe suggested that all haloalkane degraders carry the dhaA gene region both on the chromosome and on a plasmid (70 to 100 kb). This suggests that an ancestral plasmid was transferred between these Rhodococcus strains and subsequently has undergone insertions or deletions. In addition, transposition events and/or plasmid integration may be responsible for positioning the dhaA gene region on the chromosome. The data suggest that the haloalkane dehalogenase gene regions of these gram-positive haloalkane-utilizing bacteria are composed of a single catabolic gene cluster that was recently distributed worldwide.  相似文献   

18.
Nucleotide sequences of two extended segments of the terminal variable regions in variola virus genome were determined. The size of the left segment was 13.5 kbp and of the right, 10.5 kbp. Totally, over 540 kbp were sequenced for 22 variola virus strains. The conducted phylogenetic analysis and the data published earlier allowed us to find the interrelations between 70 variola virus isolates, the character of their clustering, and the degree of intergroup and intragroup variations of the clusters of variola virus strains. The most polymorphic loci of the genome segments studied were determined. It was demonstrated that that these loci are localized to either noncoding genome regions or to the regions of destroyed open reading frames, characteristic of the ancestor virus. These loci are promising for development of the strategy for genotyping variola virus strains. Analysis of recombination using various methods demonstrated that, with the only exception, no statistically significant recombinational events in the genomes of variola virus strains studied were detectable.  相似文献   

19.
Unlike vertebrates and RNA-containing viruses, the objective estimate of molecular clock for DNA-containing viruses was so far absent. An extended central conservative genomic region of orthopoxviruses (about 102 kbp) and the sequence of DNA polymerase gene (about 3 kbp) of the viruses belonging to various genera from the family Poxviridae were analyzed. During this analysis, the known dating of variola virus (VARV) transfer from West Africa to South America (XVI century) and our own data on close phylogenetic relations between the modem West African and South American VARV isolates were used. As a result of this work, it was calculated for the first time that the rate of mutation accumulation in these DNA-containing viruses amounted to 0.9-1.2 x 10(-6) substitutions per site per year. The poxviruses started separating from the ancestor virus to form the modem genera approximately 500 thousand years ago; the ancestor of the genus Orthopoxvirus separated about 300 thousand years ago; and its division into the modem studied species took place approximately 14 thousand years ago.  相似文献   

20.
Ectromelia virus (ECTV), a natural mouse pathogen and the causative agent of mousepox, is closely related to variola virus (VARV), which causes smallpox in humans. Mousepox is an excellent surrogate small-animal model for smallpox. Both ECTV and VARV encode a multitude of host response modifiers that target components of the immune system and that are thought to contribute to the high mortality rates associated with infection. Like VARV, ECTV encodes a protein homologous to the ectodomain of the host gamma interferon (IFN-gamma) receptor 1. We generated an IFN-gamma binding protein (IFN-gammabp) deletion mutant of ECTV to study the role of viral IFN-gammabp (vIFN-gammabp) in host-virus interaction and also to elucidate the contribution of this molecule to the outcome of infection. Our data show that the absence of vIFN-gammabp does not affect virus replication per se but does have a profound effect on virus replication and pathogenesis in mice. BALB/c mice, which are normally susceptible to infection with ECTV, were able to control replication of the mutant virus and survive infection. Absence of vIFN-gammabp from ECTV allowed the generation of an effective host immune response that was otherwise diminished by this viral protein. Mice infected with a vIFN-gammabp deletion mutant virus, designated ECTV-IFN-gammabp(Delta), produced increased levels of IFN-gamma and generated robust cell-mediated and antibody responses. Using several strains of mice that exhibit differential degrees of resistance to mousepox, we show that recovery or death from ECTV infection is determined by a balance between the host's ability to produce IFN-gamma and the virus' ability to dampen its effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号