首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal sheep erythrocytes as well as glutathione- (GSH-) deficient and arginase-deficient sheep erythrocytes have been characterized by 1H nuclear magnetic resonance spectroscopy. The GSH deficiency is a result of defective amino acid transport (lesion 1), diminished gamma-glutamylcysteine synthetase activity (lesion 2), or both (lesions (1 + 2)). 1H-NMR spectra of normal sheep erythrocytes are similar to those for human erythrocytes, and consist of resonances from a number of small intracellular molecules, including GSH. In contrast, the resonances for GSH in the GSH-deficient erythrocytes are much weaker, and strong resonances are observed for lysine, threonine and ornithine or arginine, depending on the arginase activity, in erythrocytes with lesion 1 and lesions (1 + 2). A comparison of the intensity of GSH resonances in spectra for normal and GSH-deficient erythrocytes with GSH levels determined spectrophotometrically following reaction with the nonspecific thiol reagent 5,5'-dithiobis(2-nitrobenzoate) (DTNB) indicates that either not all of the GSH determined with Ellman's reagent is free and observable by 1H-NMR or that not all of the thiol determined by Ellman's reagent is GSH. If the latter is the case, the GSH levels determined with Ellman's reagent for erythrocytes with lesions (1 + 2) are most affected, which might account for their high susceptibility to oxidative stress.  相似文献   

2.
The levels of the lipid peroxidation products (LPO), different forms of protein SH-groups and their oxidation rate in the homogenates of the mesencephalon, hypothalamus and sensorymotor cortex of normal and GSH-deficient rats under 3-day food starvation were studied. It was shown, that the basic level of LPO products--lipid hydroperoxides and malonic dialdehyde (MDA) in hypothalamus and sensorymotor cortex of normal animals are by 20-30% (p < 0.05) higher and reduced glutathione (GSH) content is 2 times higher, than these values in mesencephalon. Under 3 day starvation of normal animals activation of the LPO observed only in the hypothalamus and sensorymotor cortex, whereas under 3 day starvation of the GSH-deficient rats formed by the intraparenteraly injection of diethylmaleate in a dose of 2.5 mmol/kg of body weight in all investigated structures the lipid hydroperoxides and MDA increased many times (2-3 times), the content of the surface and masked protein SH-groups decreased and essentially increased the oxidation rate of these functional groups. It was proposed that GSH and its enzymes participate in the LPO regulation and protection of protein SH-groups from oxidative damage at this event the intensity of this prosesse depends on structural and functional organization of nervous tissues.  相似文献   

3.
The effect of glutathione (GSH) on the ultraviolet (UV) induction of lambda prophage was investigated in lysogenic Escherichia coli. The data showed that extracellular GSH could inhibit the UV induction of lambda prophage. The inhibitory rates were concentration dependent, and the maximal rate obtained was 94% with 3.0 M GSH. The effect was also measured in three different lambda lysogens: a wild-type strain (wt), an isogenic GSH-deficient strain, and an isogenic strain producing increased amounts of GSH. The result showed that when subjected to UV irradiation (254 nm, 60 J m−2), GSH-deficient strain was approximately fivefold more sensitive to be lysed than wt, whereas the strain with higher intracellular GSH levels was only 28% susceptible to be lysed. With electron spin resonance and spin trapping techniques, we observed that free radical signals occurred in the suspensions of UV irradiated lysogenic cells and the intensity of signals was influenced by GSH levels. These results indicate that GSH can significantly inhibit the UV induction of lambda prophage, and that this effect is correlated to its capacity to scavenge free radicals generated after UV irradiation.  相似文献   

4.
The concentration of glutathione (GSH) in bacteria is many-fold less than in mammalian cells except forEscherichia coli, where the GSH level is similar to that of mammalian tissues. On the basis of our observation that GSH in a B strain, ATCC 29682, was reduced (>80%) by exposure to oxidants while a K-12 strain (AB 1157) was minimally affected (<20%), we constructed a B strain GSH-deficient mutant that exhibited antioxidant enzyme activities similar to the wild strain. We successfully transduced thegsh A:: Tn10Km allele from JTG-10, a GSH-deficient K-12 strain, to ATCC 29682, the GSH-sufficient B strain. Compared with ATCC 29682, the growth of the GSH-deficient B mutant, designated RCI-1, was more sensitive to the presence of thiol-reactive chemicals. However, no difference was found between GSH-sufficient and -deficient strains in lethality following exposure to the same thiol-reactive chemicals. Thus, GSH inE. coli B is important in maintaining growth in the presence of oxidants but does not affect oxidant lethality.  相似文献   

5.
Here, we provide genetic and biochemical evidence indicating that the ability of Rhizobium etli bacteria to efficiently catabolize glutamine depends on its ability to produce reduced glutathione (l-γ-glutamyl-l-cysteinylglycine [GSH]). We find that GSH-deficient strains, namely a gshB (GSH synthetase) and a gor (GSH reductase) mutant, can use different amino acids, including histidine, alanine, and asparagine but not glutamine, as sole source of carbon, energy, and nitrogen. Moreover, l-buthionine(S,R)-sulfoximine, a GSH synthesis inhibitor, or diamide that oxidizes GSH, induced the same phenotype in the wild-type strain. Among the steps required for its utilization, glutamine uptake, occurring through the two well-characterized carriers (Aap and Bra systems) but not glutamine degradation or respiration, was largely reduced in GSH-deficient strains. Furthermore, GSH-deficient mutants of R. etli showed a reduced symbiotic efficiency. Exogenous GSH was sufficient to rescue glutamine uptake or degradation ability, as well as the symbiotic effectiveness of GSH mutants. Our results suggest a previously unknown GSH-glutamine metabolic relationship in bacteria.  相似文献   

6.
Glutathione (GSH) biosynthesis-deficient gsh1 and gsh2 null mutants of Arabidopsis thaliana have late embryonic-lethal and early seedling-lethal phenotypes, respectively, when segregating from a phenotypically wild-type parent plant, indicating that GSH is required for seed maturation and during germination. In this study, we show that gsh2 embryos generated in a partially GSH-deficient parent plant, homozygous for either the cad2 mutation in the GSH1 gene or homozygous for mutations in CLT1, CLT2 and CLT3 encoding plastid thiol transporters, abort early in embryogenesis. In contrast, individuals homozygous for the same combinations of mutations but segregating from heterozygous, phenotypically wild-type parents exhibit the parental gsh2 seedling-lethal phenotype. Similarly, homozygous gsh1 embryos generated in a gsh1/cad2 partially GSH-deficient parent plant abort early in development. These observations indicate that the development of gsh1 and gsh2 embryos to a late stage is dependent on the level of GSH in the maternal plant.  相似文献   

7.
The alimentary deficiency of vitamin A causes marked shifts in the metabolism of GSH: the levels of GSH, GSSG and cysteine in the liver increase, while the activities of glutathione-S-transferase (using glycerol as substrate) and gamma-glutamyltransferase in the liver show a rise. At the same time, vitamin A deficiency causes a decrease of the glutathione peroxidase and catalase activity in the liver. The data obtained are discussed in terms of the role of GSH and enzymes of GSH metabolism in the protection of cells against the damaging influence of lipid peroxidation.  相似文献   

8.
The aim of this work was to determine the effects of dietary intake vitamin E and selenium (Se) on lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and on the antioxidative defense mechanisms in the liver of rats treated with high doses of prednisolone. Two hundred fifty adult male Wistar rats were randomly divided into five groups. The rats were fed a normal diet, but groups 3, 4, and 5 received a daily supplement in their drinking water of 20 mg vitamin E, 0.3 mg Se, and a combination of vitamin E and Se, respectively, for 30 d. For 3 d subsequently, the control group (group 1) was treated with a placebo, and the remaining four groups were injected intramuscularly with 100 mg/kg body weight (BW) prednisolone. After the last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48 h and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) enzymes and the levels of glutathione (GSH) and TBARS in their livers were measured. GSH-Px, SOD, and CAT enzyme activities and GSH levels in prednisolone-treatment group (group 2) began to decrease gradually at 4 h, falling respectively to 38%, 55%, and 40% of the control levels by 24 h, and recovering to the control levels at 48 h. In contrast, prednisolone administration caused an increase in the hepatic TBARS, reaching up to four times the levels of the control at 24 h. However, supplementation with vitamin E and Se had a preventive effect on the elevation of the hepatic TBARS and improved the diminished activities of the antioxidative enzymes and the levels of GSH. Therefore, the present study demonstrates the effectiveness of vitamin E and Se in reducing hepatic damage in glucocorticoid-treated rats and suggests that reductions in increased TBARS as a result of prednisolone may be an important factor in the action of vitamin E and Se.  相似文献   

9.
The tripeptide glutathione (GSH) is part of an integrated antioxidant system that protects cells and tissues from oxidative damage. Oxidative stress can result from exposure to excessive amounts of endogenous and exogenous electrophiles. Until recently, animal and cell model systems used to investigate the role of GSH in disease processes had employed chemical agents that deplete cellular GSH by inhibiting GSH synthesis or by reacting chemically with GSH. Such models have proven useful, but questions concerning nonspecific effects of such chemicals remain. Recently, our laboratories and others have developed mouse models with genetic deficiencies in enzymes of the GSH biosynthetic pathway. This review focuses on the regulation of GSH homeostasis and, specifically, the new GSH-deficient mouse models that have been developed. These models will improve our understanding of the role of GSH in animal and human diseases.  相似文献   

10.
A decrease in GSH levels, the main redox regulator, can be observed in neurodegenerative diseases as well as in schizophrenia. In search for substances able to increase GSH, we evaluated the ability of curcumin (polyphenol), quercetin (flavonoid), and tert -butylhydroquinone (tBHQ) to up-regulate GSH-synthesizing enzymes. The gene expression, activity, and product levels of these enzymes were measured in cultured neurons and astrocytes. In astrocytes, all substances increased GSH levels and the activity of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). In neurons, curcumin and to a lesser extent tBHQ increased GCL activity and GSH levels, while quercetin decreased GSH and led to cell death. In the two cell types, the gene that showed the greatest increase in its expression was the one coding for the modifier subunit of GCL (GCLM). The increase in mRNA levels of GCLM was 3 to 7-fold higher than that of the catalytic subunit. In astrocytes from GCLM-knock-out mice showing low GSH (−80%) and low GCL activity (−50%), none of the substances succeeded in increasing GSH synthesis. Our results indicate that GCLM is essential for the up-regulation of GCL activity induced by curcumin, quercetin and tBHQ.  相似文献   

11.
Percoll density gradients were used to separate sheep erythrocytes according to cell age. Erythrocytes with low intracellular levels of glutathione (GSH) caused by an inherited deficiency of the System C amino acid transporter exhibited large age-related decreases in GSH and K+ content. In contrast, there was no age-related loss of intracellular GSH in normal sheep erythrocytes or in sheep erythrocytes with low GSH resulting from a diminished activity of gamma-glutamylcysteine synthetase. Loss of GSH from amino acid transport-deficient erythrocytes was paralleled by the progressive appearance of Heinz bodies in the cells, indicating an increased susceptibility to oxidative damage.  相似文献   

12.
Mice were given an oral dose of glutathione (GSH) (100 mg/kg) and concentrations of GSH were measured at 30, 45 and 60 min in blood plasma and after 1 h in liver, kidney, heart, lung, brain, small intestine and skin. In control mice, GSH concentrations in plasma increased from 30 microM to 75 microM within 30 min of oral GSH administration, consistent with a rapid flux of GSH from the intestinal lumen to plasma. Under these GSH-sufficient conditions, no increases over control values were obtained in GSH concentrations in most tissues except lung over the same time course. Mice pretreated for 5 days with the GSH synthesis inhibitor, L-buthionine-S,R-sulfoximine (BSO, 80 mumol/day) had substantially decreased tissue concentrations of GSH. Oral administration of GSH to these GSH-deficient animals gave statistically significant increases in GSH concentrations in kidney, heart, lung, brain, small intestine and skin but not in the liver. Administration of the equivalent amount of the constituent amino acids, glutamate, cysteine, and glycine, resulted in little change in GSH concentrations in all tissues in GSH-deficient animals. Thus, the results show that oral GSH can increase GSH concentrations in several tissues following GSH depletion, such as can occur in toxicological and pathological conditions in which GSH homeostasis is compromised.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is the only known apical glutathione (GSH) transporter in the lung. The purpose of these studies was to determine whether oral GSH or glutathione disulfide (GSSG) treatment could increase lung epithelial lining fluid (ELF) GSH levels and whether CFTR plays a role in this process. The pharmacokinetic profile of an oral bolus dose of GSH (300 mg/kg) was determined in mice. Plasma, ELF, bronchoalveolar lavage (BAL) cells, and lung tissue were analyzed for GSH content. There was a rapid elevation in the GSH levels that peaked at 30 min in the plasma and 60 min in the lung, ELF, and BAL cells after oral GSH dosing. Oral GSH treatment produced a selective increase in the reduced and active form of GSH in all lung compartments examined. Oral GSSG treatment (300 mg/kg) resulted in a smaller increase of GSH levels. To evaluate the role of CFTR in this process, Cftr knockout (KO) mice and gut-corrected Cftr KO-transgenic (Tg) mice were given an oral bolus dose of GSH (300 mg/kg) and compared with wild-type mice for changes in GSH levels in plasma, lung, ELF, and BAL cells. There was a twofold increase in plasma, a twofold increase in lung, a fivefold increase in ELF, and a threefold increase in BAL cell GSH levels at 60 min in wild-type mice; however, GSH levels only increased by 40% in the plasma, 60% in the lung, 50% in the ELF, and twofold in the BAL cells within the gut-corrected Cftr KO-Tg mice. No change in GSH levels was observed in the uncorrected Cftr KO mice. These studies suggest that CFTR plays an important role in GSH uptake from the diet and transport processes in the lung.  相似文献   

14.
Percoll density gradients were used to separate sheep erythrocytes according to cell age. Erythrocytes with low intracellular levels of glutathione (GSH) caused by an inherited deficiency of the System C amino acid transporter exhibited large age-realted decreases in GSH and K+ content. In contrast, there was no age-related loss of intracellular GSH in normal sheep erythrocytes or in sheep erythrocytes with low GSH resulting from a diminished activity of γ-glutamylcysteine synthetase. Loss of GSH from amino acid transport-deficient erythrocytes was parallel by the progressive appearance of Heinz bodies in the cells, indicating an increased susceptibility to oxidative damage.  相似文献   

15.
Abstract: Plants and the fission yeast Schizosaccharomyces pombe synthesize small cadmium-binding peptides, called phytochelatins, in response to cadmium. Derived from glutathione (GSH: λ-Glu-Cys-Gly), they have the general structure (λ-Glu-Cys) n Gly, where n is 2–11. In order to study the biosynthesis of phytochelatins, we used the mutagen N -methyl- N '-nitro- N nitrosoguanidine (MNNG) to select mutants with a lowered GSH content. GSH-deficient mutants show a Cd-sensitive phenotype, whereas resistance to Cu is only slightly influenced. These Cd-sensitive mutants contain 2–15% of the wild-type GSH level. For three mutants a lowered activity of λ-glutamylcysteine synthetase was measured. One of the mutants was transformed to Cd-resistance and the complementing fragment was analyzed further. The complementing fragment hybridized with chromosome III. In the transformants, GSH content was restored up to wild-type levels, whereas the activity of λ-glutamylcysteine synthetase was significantly increased compared with the wild-type. Possible mechanisms for Cd-resistance in the transformants are discussed.  相似文献   

16.
The protective activity of small stress proteins (sHsp) against H2O2-mediated cell death in the highly sensitive murine L929 fibroblast has been analyzed. We report here that the human Hsp27- and murine Hsp25-mediated rise in glutathione (GSH) levels as well as the maintenance of this redox modulator in its reduced form was directly responsible for the protection observed at the level of cell morphology and mitochondrial membrane potential. sHsp expression also buffered the increase in protein oxidation following H2O2 treatment and protected several key enzymes against inactivation. In this case, however, the protection necessitated both an increase in GSH and the presence of sHsp per se since the pattern of protection against protein oxidation mediated by a simple GSH increase was different from that induced by sHsp expression. Among the enzymes analyzed, we noticed that sHsp significantly increased glucose-6-phosphate dehydrogenase (G6PD) activity and to a lesser extent glutathione reductase and glutathione transferase activities. Moreover, an increased GSH level was observed in G6PD-overexpressing L929 cell clones. Taken together our results suggest that sHsp protect against oxidative stress through a G6PD-dependent ability to increase and uphold GSH in its reduced form and by using this redox modulator as an essential parameter of their in vivo chaperone activity against oxidized proteins.  相似文献   

17.
Thermal tolerance is a transient state of heat resistance occurring in cells and tissues after exposure to sublethal heat or certain chemicals. Although the mechanism of such resistance is unknown, it has been recently shown that preceding its development, cellular glutathione (GSH) levels rise. We have used a glutathione synthetase-deficient [GSH(-)] human fibroblast line to study the relationship between glutathione content and thermal tolerance. The GSH(-) cells had approximately 6% as much GSH as normal fibroblasts. Normal and GSH(-) fibroblasts showed similar survival after exposure to 45 degrees C. Exposure of normal fibroblasts to heat (45 degrees C for 15 min) led to a prompt rise in cellular GSH content as well as development of transient thermal tolerance. Similar treatment of GSH(-) fibroblasts produced no change in the very low GSH levels but was associated with a degree of thermal tolerance similar to that of normal cells. Thermal tolerance decayed more rapidly in GSH(-) cells than in normal fibroblasts. We conclude that the development of thermal tolerance in human fibroblasts is independent of GSH content.  相似文献   

18.
The objective of this study was to evaluate the effect of levosimendan (chemical formula C14H12N6O) exposure on oxidant/antioxidant status and trace-element levels in the thoracic aorta of rats. Eighteen male Wistar albino rats were randomly divided into two groups of eight animals each. Group 1 was not exposed to levosimendan and served as a control. Levosimendan (12???g/kg) diluted in 10 ml 0.5?% dextrose was administered intraperitoneally to group 2. Animals of both groups were killed after 3?days, and their thoracic aortae were harvested for determination of changes in tissue oxidant/antioxidant status and trace-element levels. The animals in both groups were killed 72?h after levosimendan exposure, and thoracic aortae were harvested for determination of the lipid peroxidation product MDA and antioxidant GSH levels and the activities of antioxidant enzymes such as SOD, GSH-Px and CAT. It was found that MDA, GSH and CAT enzyme levels increased in thoracic aortae of rats after levosimendan administration. SOD and CA enzyme activities and the level of antioxidant GSH decreased in thoracic aortae of rats after levosimendan treatment. Pb, Cd and Fe levels of thoracic aortae were significantly higher (P?<?0.001) and Mg, Mn, Zn and Cu were significantly lower (P?<?0.001) in the levosimendan group compared to the control group. These results suggest that short-term levosimendan treatment caused an increase in free radical production and a decrease in antioxidant enzyme activity in thoracic aortae of levosimendan-treated rats. It also causes a decrease or increase in many mineral levels of the thoracic aorta, which is an undesirable condition for normal pharmacological function.  相似文献   

19.
The aim of this work was to determine the effects of dietary vitamin E and selenium (Se) on lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and on the antioxidative defence mechanisms in the kidney of rats treated with high-doses of prednisolone. Two hundred and fifty adult male Wistar rats were randomly divided into five groups. The rats were fed a normal diet, but groups 3, 4, and 5 received a daily supplement in their drinking water of 20 mg vitamin E, 0.3 mg Se, and a combination of vitamin E and Se, respectively, for 30 days. For 3 days subsequently, the control group (group 1) was treated with a placebo, and the remaining four groups were injected intramuscularly with 100 mg kg(-1) body weight (bw) prednisolone. After the last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48 h and the activities of glutathione peroxidase (GSH-Px) and catalase (CAT) enzymes, and the levels of glutathione (GSH) and TBARS in their kidneys were measured. GSH-Px and CAT enzyme activities and GSH levels in the prednisolone treatment group (group 2) began to decrease gradually at 4 h, falling respectively to 48 and 65% of the control levels by 24 h, and recovering to the control levels at 48 h. In contrast, prednisolone administration caused an increase in TBARS in the kidneys, reaching up to twice the levels of the control group at 24 h. However, supplementation with vitamin E and Se had a preventive effect on the elevation of kidney TBARS and improved the diminished activities of the antioxidative enzymes and the levels of GSH. Therefore, the present study demonstrates the effectiveness of vitamin E and Se in reducing kidney damage in glucocorticoid-treated rats and suggests that reductions in increased TBARS due to prednisolone may be an important factor in the action of vitamin E and Se.  相似文献   

20.
Glutathione and GSH-related enzymes were determined in human Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) skin fibroblasts in order to relate muscular dystrophy to the redox state of the cell. The analysis of GSH, GSSG and total GSH levels in normal and dystrophic-cultured fibroblasts shows no differences in normal growth condition. However, the specific activity of two GSH-related enzymes, glutathione S-transferases (GST) and gamma-glutamylcysteine synthetase (gamma-GCS), shows significant variations between normal and both types of dystrophic skin fibroblasts. These results suggest that even in normal growth condition some components of GSH metabolism may be altered. A condition of sublethal oxidation obtained by H(2)O(2) treatment was able to show a difference in the cellular response of GSH system components between normal and dystrophic cells. While in DMD cells there is a decrease of roughly 55% in GSH and of 30% in total GSH concentration, no changes are measured in normal and BMD cells. The remarkable increase in glutathione peroxidase (GPx) activity and decrease in GSH-reductase (GR) activity measured in DMD cells can in part explain these changes. These results indicate a different capacity of DMD cells to support oxidative stress with respect to BMD and normal cells, and suggest a possible role of the GSH-antioxidant system in dystrophic pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号