首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoresis of a Corynebacterium glutamicum membrane preparation in the presence of sodium dodecyl sulfate, followed by staining for peroxidase activity (heme staining), showed only one band at about 28 kDa. This 28 kDa protein was purified from C. glutamicum membranes by chromatography in the presence of decylglucoside using DEAE-Toyopearl and hydroxylapatite columns, as the sole c-type cytochrome in the bacterium. The cytochrome showed an alpha band at 551 nm, and its E(m, 7) was about 210 mV. A QcrCAB operon encoding the subunits of a putative quinol cytochrome c reductase was found 3'-downstream of ctaE encoding subunit III of cytochrome aa(3) in the C. glutamicum genome. The deduced amino acid sequence of qcrC, composed of 283 amino acid residues, contained two heme C-binding motifs and was in agreement with partial peptide sequences obtained from the 28 kDa protein after V8 protease digestion. We propose to name this protein cytochrome cc. The presence of cytochrome cc is a common feature of high G+C content Gram-positive bacteria, since we could confirm this protein by electrophoresis; homologous QcrCAB operons are also known in Mycobacterium and Streptomyces. QcrA and qcrB of C. glutamicum encode the Rieske Fe-S protein and cytochrome b, respectively, although these proteins were not co-purified with cytochrome cc. The phylogenetic tree of cytochromes b and b(6) show that C. glutamicum cytochrome b, along with those of other bacteria in the high G+C group, is rather different from the Bacillus counterparts, but highly similar to the Deinococci and Thermus cytochromes. This indicates that there is a fourth group of bacteria in addition to the three clades: proteobacterial cytochrome b, cyanobacterial b(6) and green sulfur-low G+C Gram-positive bacteria.  相似文献   

2.
Heliobacterium modesticaldum is a Gram-positive, anaerobic, anoxygenic photoheterotrophic bacterium. Its cytochrome bc complex (Rieske/cyt b complex) has some similarities to cytochrome b(6)f complexes from cyanobacteria and chloroplasts, and also shares some characteristics of typical bacterial cytochrome bc(1) complexes. One of the unique factors of the heliobacterial cytochrome bc complex is the presence of a diheme cytochrome c instead of the monoheme cytochrome f in the cytochrome b(6)f complex or the monoheme cytochrome c(1) in the bc(1) complex. To understand the structure and function of this diheme cytochrome c protein, we expressed the N-terminal transmembrane-helix-truncated soluble H. modesticaldum diheme cytochrome c in Escherichia coli. This 25kDa recombinant protein possesses two c-type hemes, confirmed by mass spectrometry and a variety of biochemical techniques. Sequence analysis of the H. modesticaldum diheme cytochrome c indicates that it may have originated from gene duplication and subsequent gene fusion, as in cytochrome c(4) proteins. The recombinant protein exhibits a single redox midpoint potential of +71mV versus NHE, which indicates that the two hemes have very similar protein environments.  相似文献   

3.
Z Adam  R Malkin 《FEBS letters》1987,225(1-2):67-71
The Rieske Fe-S protein can be isolated from the cytochrome b6-f complex by means of chromatography on a hydroxyapatite column in the presence of detergent. Depletion of the cytochrome complex from the Rieske protein results in the loss of oxidoreductase activity, as well as the ability to reduce cytochrome b6. The Rieske Fe-S protein can be reconstituted into the Rieske-depleted complex by removal of the Triton X-100 molecules associated with the protein fractions, and their substitution by lipids. Upon reconstitution the complex is reactivated, and the role of the Rieske Fe-S protein in the reduction of both plastocyanin and cytochrome b6 can be demonstrated.  相似文献   

4.
Electron spin echo envelope modulation (ESEEM) experiments performed on the Rieske Fe-S clusters of the cytochrome b6f complex of spinach chloroplasts and of the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria show modulation components resulting from two distinct classes of 14N ligands. At the g = 1.92 region of the Rieske EPR spectrum of the cytochrome b6f complex, the measured hyperfine couplings for the two classes of coupled nitrogens are A1 = 4.6 MHz and A2 = 3.8 MHz. Similar couplings are observed for the Rieske centers in the three cytochrome bc1 complexes. These ESEEM results indicate a nitrogen coordination environment for these Rieske Fe-S centers that is similar to that of the Fe-S cluster of a bacterial dioxygenase enzyme with two coordinated histidine ligands [Gurbiel, R. J., Batie, C. J., Sivaraja, M., True, A. E., Fee, J. A., Hoffman, B. M., & Ballou, D. P. (1989) Biochemistry 28, 4861-4871]. The Rieske Fe-S cluster lacks modulation components from a weakly coupled peptide nitrogen observed in water-soluble spinach ferredoxin. Treatment with the quinone analogue inhibitor DBMIB causes a shift in the Rieske EPR spectrum to g = 1.95 with no alteration in the magnetic coupling to the two nitrogen atoms. However, the ESEEM pattern of the DBMIB-altered Rieske EPR signal shows evidence of an additional weakly coupled nitrogen similar to that observed in the spinach ferredoxin ESEEM patterns.  相似文献   

5.
Detailed comparison of the 'Rhodopseudomonas sphaeroides GA' strain used by Gabellini et al. (1985) with genuine R. sphaeroides and R. capsulata strains indicated that the previously reported fbc operon of R. sphaeroides (Gabellini and Sebald, 1986) encoding the structural genes for the Rieske Fe-S protein, cytochrome b and cytochrome c1 subunits of the ubiquinol:cytochrome c2 oxidoreductase, is not from R. sphaeroides, but is rather from a strain of R. capsulata. Consequently, the genuine bc1 genes from R. sphaeroides were cloned using corresponding R. capsulata genes as probes, and a partial nucleotide sequence for the Rieske Fe-S protein of R. sphaeroides was determined and compared with that of R. capsulata.  相似文献   

6.
7.
Significant recent advances have been made in studies of the major dissimilatory nitrate reductase (NarGHI) of Escherichia coli. This enzyme is a complex iron-sulfur ([Fe-S]) molybdoenzyme that oxidizes menaquinol or ubiquinol at a periplasmically oriented Q-site (Qp site), and reduces nitrate at a cytoplasmically-oriented molybdo-(bismolybdopterin guanine dinucleotide) (Mo-bisMGD) cofactor. The Qp site, as well as two hemes, termed bL and bH, are localized in a hydrophobic diheme cytochrome b(Narl) that: (i) provides a conduit for electron-transfer from the periplasmically-oriented Qp-site; (ii) provides a membrane anchoring functionality for the membrane-extrinsic subunits (NarGH) that coordinate the Mo-bisMGD (NarG) and four [Fe-S] clusters (NarH); and (iii) helps ensure the separation of sites of H+-yielding and H+-consuming reactions such that enzyme turnover leads to the generation of a proton-electrochemical potential across the cytoplasmic membrane. This minireview focuses on recent advances and future prospects for the diheme cytochrome b subunit (Narl) of NarGHI.  相似文献   

8.
The nucleotide sequence of the pet operon of Rhodopseudomonas capsulata strain SB1003 has been determined. This operon consists of the petA, petB and petC genes, which encode the Rieske Fe-S protein, cytochrome b and cytochrome c1, respectively, all components of the ubiquinol-cytochrome c2 oxidoreductase. The deduced amino acid sequences of the pet genes show homology to the corresponding proteins from other organisms, and particularly high homologies (over 90% for amino acid and nucleotide sequences) to the previously described fbc operon from a strain previously identified as Rhodopseudomonas spheroides GA. The amino acid sequences of the pet proteins are discussed with reference to the structure and function of the ubiquinol-cytochrome c2 oxidoreductase.  相似文献   

9.
The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 microM) but binds much more weakly to the oxidized form (Kd = 3.1 microM). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 microM. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 microM) and reduced cytochrome c2 binds less strongly (Kd = 0.11 microM) but approximately 30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c2, when it is proximal to cytochrome c1.  相似文献   

10.
Sadoski RC  Engstrom G  Tian H  Zhang L  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting.  相似文献   

11.
We isolated a cDNA encoding human Rieske Fe-S protein of mitochondrial cytochrome bc1 complex from a fibroblast cDNA library by colony hybridization. The cDNA contains the nucleotide sequence encoding all of the amino acids (274 residues) comprising the putative precursor to the protein. Based on the known amino acid sequence of bovine Rieske Fe-S protein, the N-terminal extension sequence is presumed to be composed of 78 amino acids with a molecular weight of 8053. The mature protein consists of the same number of amino acid residues as that of its rat and bovine counterparts, having a homology of about 92% with the latter.  相似文献   

12.
A cytochrome b/c1 complex which catalyses the reduction of cytochrome c by ubiquinol has been isolated from Rhodopseudomonas sphaeroides GA. It contains two hemes b and substoichiometric amounts of ubiquinone-10 and of the Rieske Fe-S center per cytochrome c1, and is essentially free of reaction center and bacteriochlorophyll. The complex consists of three major polypeptides with apparent molecular masses of 40, 34 and 25 kDa. The 34-kDa polypeptide carries heme. Cytochrome c1 has a midpoint potential of 285 mV. For cytochrome b two midpoint potentials, at 50 and -60 mV, at pH 7.4, can be derived if one assumes two components of equal amount. Ubiquinol--cytochrome c oxidoreductase activity is specific for ubiquinol and bacterial cytochromes c, and is inhibited by antimycin A and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole. The complex shows oxidant-induced reduction of cytochrome b.  相似文献   

13.
The cytochrome b6f complex of spinach chloroplasts was prepared with minor modification according to the method of E. Hurt and G. Hauska (1981) Eur. J. Biochem. 117, 591-599) replacing, however, the final ultracentrifugation step by hydroxyapatite chromatography as suggested by M. F. Doyle and C.-A Yu (1985) Biochem. Biophys. Res. Commun. 131, 700-706). The purified complex was partially dissociated by treatment with 4 M urea or 0.1% sodium dodecyl sulfate (SDS) in the absence of reducing agents. A binary subcomplex consisting of cytochrome f and the Rieske iron-sulfur protein was observed under these conditions by three different methods: (a) hydroxyapatite chromatography; (b) extraction with an isopropanol/water/trifluoroacetic acid mixture; and (c) gel filtration in the presence of low SDS concentrations. The subcomplex dissociated into its components by treatment with mercaptoethanol. These results suggest a close interaction of the cytochrome f with the Rieske protein involving SH groups which under reducing conditions leads to complete dissociation of the subcomplex.  相似文献   

14.
The nearest-neighbor relationship among the constituent polypeptides of the isolated plastoquinol-plastocyanin oxidoreductase from spinach chloroplasts has been investigated. (1) The isolated plastoquinol-plastocyanin oxidoreductase (the b6/f complex) is treated with various concentrations of the cross-linker glutaraldehyde. The treated b6/f complexes are then analyzed by SDS-polyacrylamide gel electrophoresis coupled with the immunodecoration of cross-link products by specific antibodies for each of the four prominent constituent polypeptides. Cytochrome b6 is found to be most resistant to forming any intermolecular cross-link products. At low concentrations of glutaraldehyde, the 'Rieske' iron-sulfur (Fe-S) protein and subunit IV of the b6/f complex, however, appear to form cross-link products with a relative molecular weight of 35 000. Dimers of cytochrome f and cytochrome f/Rieske protein cross-link products can also be detected. (2) When a Rieske Fe-S protein-depleted b6/f complex is used in place of the control b6/f complex, cytochrome b6 is less resistant to intermolecular cross-linking, while subunit IV does not form any 35 kDa cross-link product, unlike the case in control b6/f complex. Subunit IV is concluded to be closely associated with the Rieske Fe-S protein. This provides evidence that subunit IV is a bona fide component of the cytochrome b6/f complex, although no function can yet be assigned to it. The results are discussed in relationship to the spatial and functional relationships among the components of the b6/f complex.  相似文献   

15.
Heliobacteria have a Rieske/cytochrome b complex composed of a Rieske protein, a cytochrome b(6,) a subunit IV and a di-heme cytochrome c. The overall structure of the complex seems close to the b(6)f complex from cyanobacteria and chloroplasts to the exception of the di-heme cytochrome. We show here by biochemical and biophysical studies that a heme c(i) is covalently attached to the Rieske/cytochrome b complex from Heliobacteria. We studied the EPR signature of this heme in two different species, Heliobacterium modesticaldum and Heliobacillus mobilis. In contrast to the case of b(6)f complex, a strong axial ligand to the heme is present, most probably a protonatable amino acid residue.  相似文献   

16.
Through pattern matching of the cytochrome c heme-binding site (CXXCH) against the genome sequence of Shewanella oneidensis MR-1, we identified 42 possible cytochrome c genes (27 of which should be soluble) out of a total of 4758. However, we found only six soluble cytochromes c in extracts of S. oneidensis grown under several different conditions: (1) a small tetraheme cytochrome c, (2) a tetraheme flavocytochrome c-fumarate reductase, (3) a diheme cytochrome c4, (4) a monoheme cytochrome c5, (5) a monoheme cytochrome c', and (6) a diheme bacterial cytochrome c peroxidase. These cytochromes were identified either through N-terminal or complete amino acid sequence determination combined with mass spectroscopy. All six cytochromes were about 10-fold more abundant when cells were grown at low than at high aeration, whereas the flavocytochrome c-fumarate reductase was specifically induced by anaerobic growth on fumarate. When adjusted for the different heme content, the monoheme cytochrome c5 is as abundant as are the small tetraheme cytochrome and the tetraheme fumarate reductase. Published results on regulation of cytochromes from DNA microarrays and 2D-PAGE differ somewhat from our results, emphasizing the importance of multifaceted analyses in proteomics.  相似文献   

17.
1. The polypeptide composition of purified QH2: cytochrome c oxidoreductase prepared by three different methods from beef-heart mitochondria has been determined. Polyacrylamide gel electrophoresis in the presence of dodecyl sulphate resolves eight intrinsic polypeptide bands; when, in addition, 8 M urea is present and a more highly cross-linked gel is used, the smallest polypeptide band is resolved into three different bands. 2. The identity of several polypeptide bands has been established by fractionation. The two heaviest polypeptides (bands 1 and 2) represent the so-called core proteins, band 3 the hemoprotein of cytochrome b, band 4 the hemoprotein of cytochrome c1, band 5 and Rieske Fe-S protein, band 6 a polypeptide associated with cytochrome c1 and identified with the so-called oxidation factor, and band 7 a polypeptide peptide associated with cytochrome b. 3. The validity of molecular weight estimate for the polypeptides of the enzyme based on their mobility on dodecyl sulphate gels has been examined. The polypeptides of bands 1, 2 and 3 showed anomalous migration rates. The molecular weights of the other polypeptides have been estimated from their relative mobilities on either dodecyl sulphate gels or 8 M urea-dodecyl sulphate gels as 29 000, 24 000, 12 000, 8000, 6000, 5000 and 4000, respectively. 4. The stoicheiometry of the different polypeptides in the intact complex was determined using separate staining factors for the individual polypeptide band.  相似文献   

18.
The metal-reducing δ-proteobacterium Geobacter sulfurreducens produces a large number of c-type cytochromes, many of which have been implicated in the transfer of electrons to insoluble metal oxides. Among these, the dihemic MacA was assigned a central role. Here we have produced G. sulfurreducens MacA by recombinant expression in Escherichia coli and have solved its three-dimensional structure in three different oxidation states. Sequence comparisons group MacA into the family of diheme cytochrome c peroxidases, and the protein indeed showed hydrogen peroxide reductase activity with ABTS(-2) as an electron donor. The observed K(M) was 38.5 ± 3.7 μM H(2)O(2) and v(max) was 0.78 ± 0.03 μmol of H(2)O(2)·min(-1)·mg(-1), resulting in a turnover number k(cat) = 0.46 · s(-1). In contrast, no Fe(III) reductase activity was observed. MacA was found to display electrochemical properties similar to other bacterial diheme peroxidases, in addition to the ability to electrochemically mediate electron transfer to the soluble cytochrome PpcA. Differences in activity between CcpA and MacA can be rationalized with structural variations in one of the three loop regions, loop 2, that undergoes conformational changes during reductive activation of the enzyme. This loop is adjacent to the active site heme and forms an open loop structure rather than a more rigid helix as in CcpA. For the activation of the protein, the loop has to displace the distal ligand to the active site heme, H93, in loop 1. A H93G variant showed an unexpected formation of a helix in loop 2 and disorder in loop 1, while a M297H variant that altered the properties of the electron transfer heme abolished reductive activation.  相似文献   

19.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction.  相似文献   

20.
A new coulometric-potentiometric titration cuvette is described which permits accurate measurements of oxidation-reduction components in membranous systems. This cuvette has been utilized to measure the properties of cytochrome c oxidase in intact membranes of pigeon breast muscle mitochondria. The reducing equivalents accepted and donated by the portion of the respiratory chain with half-reduction potentials greater than 200 mV are equal to those required for the known components (cytochrome a3 and the high-potential copper plus cytochrome a, 'visible copper', cytochrome c1, cytochrome c, and the Rieske iron-sulfur protein). Titrations in the presence of CO show that formation of the reduced cytochrome a3-CO complex requires two reducing equivalents per cytochrome a3 (coulometric titration). Potentiometric titrations indicate (Lindsay, J.G., Owen, C.S. and Wilson, D.F. (1975) Arch. Biochem. Biophys. 169, 492--505) that both cytochromes a3 and the high-potential copper must be reduced in order to form the CO complex (n = 2.0 with a CO concentration-dependent half-reduction potential, Em). By contrast, titrations in the presence of azide show that the Em value of the high-potential copper is unchanged by the presence of azide and thus azide binds with nearly equal affinity whether the copper is reduced or oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号