首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactoferrin, an iron-binding protein of the transferrin family, is a highly basic protein which interacts with many acidic molecules, including heparin proteoglycans. Such interactions may modify some of the biological properties of lactoferrin. In the present work we found that heparin caused a dose-dependent inhibition of specific binding of both human and bovine lactoferrin to human monocytic THP-1 cells. Low-affinity binding sites (Kd 500 nM) were more susceptible to inhibition by heparin than the high-affinity sites (Kd 100 nM). The effect was mediated by interaction between lactoferrin and heparin rather than by competition between heparin and lactoferrin for common binding sites on the cells. Pretreatment of cells with NaClO3 to prevent sulphation of surface glycosaminoglycans reduced lactoferrin binding, and de-N-sulphated heparin did not inhibit binding of lactoferrin to THP-1 cells. These results suggest that heparin binding and monocyte/macrophage binding by lactoferrin both involve interactions between basic regions in the N1 domain of lactoferrin and sulphate groups. The N-terminal Arg2-Arg5 sequence of human lactoferrin may be involved, but it does not seem to be the key element in these interactions.  相似文献   

2.
Antithrombin Northwick Park and antithrombin Glasgow are functionally variant antithrombins with impaired abilities to interact with thrombin. Thrombosis is associated with their inheritance. Both of the purified, reduced, and S-carboxymethylated variant antithrombins were treated with cyanogen bromide and the major pools of each containing the amino acid sequence Gly339-Met423 were isolated. Following treatment of these pools with trypsin, fast atom bombardment mass spectrometry identified tryptic peptides (found also in normal antithrombin treated in the same way) that corresponded to amino acid sequences Gly339-Lys370 and Val400-Met423. The tryptic peptides, corresponding to amino acid sequences Ala371-Arg393 and Ser394-Arg399 were present in both variant preparations in greatly reduced amounts compared to a normal antithrombin preparation. However, two novel tryptic peptides of molecular mass (M + H)+ 2976 and 2952 were identified in the digests of antithrombin Northwick Park and Glasgow, respectively. Further analyses of these novel tryptic peptides were carried out by V8 protease treatment and sequential Edman degradation coupled with mass spectrometric analysis of the shortened peptides. This established that these peptides comprised the amino acid sequence Ala371-Arg399, but with single amino acid substitutions at the reactive site, Arg393 replaced by Cys (in antithrombin Northwick Park) and by His (in antithrombin Glasgow).  相似文献   

3.
Human lactoferrin (hLF) is an iron-binding glycoprotein involved in the innate host defense. The positively charged N-terminal domain of hLF mediates several of its activities by interacting with ligands such as bacterial lipopolysaccharide (LPS), specific receptors, and other proteins. This cationic domain is highly susceptible to limited proteolysis, which impacts on the affinity of hLF for the ligand. An analytical method, employing cation-exchange chromatography on Mono S, was developed to assess the N-terminal integrity of hLF preparations. The method, which separates N-terminally intact hLF from hLF species lacking two (Gly(1)-Arg(2)) or three (Gly(1)-Arg(2)-Arg(3)) residues, showed that 5-58% of total hLF in commercially obtained preparations was N-terminally degraded. The elution profile of hLF on Mono S unequivocally differed from lactoferrins from other species as well as homologous and other whey proteins. Analysis of fresh human whey samples revealed two variants of N-terminally intact hLF, but not limitedly proteolyzed hLF. Mono S chromatography of 2 out of 26 individual human whey samples showed a rare polymorphic hLF variant with three N-terminal arginines (Gly(1)-Arg(2)-Arg(3)-Arg(4)-Ser(5)-) instead of the usual variant with four N-terminal arginines (Gly(1)-Arg(2)-Arg(3)-Arg(4)-Arg(5)-Ser(6)-). In conclusion, Mono S cation-exchange chromatography appeared a robust method to assess the identity, purity, N-terminal integrity, and the presence of polymorphic and intact hLF variants.  相似文献   

4.
Treatment of prostaglandin (PG)H synthase purified from ram seminal vesicle microsomes with trypsin cleaves the 70-kDa subunits into 33- and 38-kDa fragments (Chen, Y.-N. P., Bienkowski, M. J., and Marnett, L. J. (1987) J. Biol. Chem. 262, 16892-16899). In contrast to a minimal decrease in cyclooxygenase activity, peroxidase activity declines rapidly following trypsin treatment. The time course for loss of guaiacol peroxidase activity corresponds closely to the time course for protein cleavage. The ability of trypsin-treated enzyme to support catalytic reduction of 5-phenyl-4-pentenyl-1-hydroperoxide in the presence of reducing substrates is significantly reduced. The products of metabolism of 10-hydroperoxy-8,12-octadecadienoic acid indicate that trypsin-treated enzyme catalyzes homolytic scission of the hydroperoxide bond in contrast to the heterolytic scission catalyzed by intact enzyme. Spectrophotometric titrations of hematin addition to trypsin-treated PGH synthase indicate approximately a 50% reduction in heme binding. These observations suggest that trypsin treatment of PGH synthase decreases the ability of the protein to bind prosthetic heme at a site that controls peroxidase activity. Comparison of the N-terminal sequence of the 38-kDa fragment of trypsin-treated PGH synthase to the amino acid sequence of the intact protein indicates that cleavage occurs between Arg253 and Gly254. Based on literature precedents and the results of the present investigations, we propose that the heme prosthetic group that controls the peroxidase activity of PGH synthase binds to the His residue of the sequence His250-Tyr251-Pro252-Arg253 located immediately adjacent to the trypsin cleavage site.  相似文献   

5.
Tyrosine hydroxylase (TH), which converts L-tyrosine to L-3, 4-dihydroxyphenylalanine, is a rate-limiting enzyme in the biosynthesis of catecholamines; its activity is regulated by the feedback inhibition of the catecholamine products including dopamine. To rationalize the significant role of the N-terminal sequence Arg(37)-Arg(38) of human TH type 1 (hTH1) in determining the efficiency of feedback inhibition, we produced mutants of which the positively charged Arg(37)-Arg(38) site was replaced by electrically neutral Gly and/or negatively charged Glu and analyzed the degree of inhibition of these mutant enzymes by dopamine. The replacement of Arg by Gly reduced the inhibitory effect of dopamine on the catalytic activity measured in the basic pH range and the replacement of Arg by Glu was enough to abolish the inhibitory effect, although these mutations brought no significant changes to the circular dichroism spectrum. The prediction of the secondary structure of N-terminal residues 1-60 by computer software specified the location of the Arg(37)-Arg(38) sequence in the turn intervening between the two alpha-helices (residues 16-29 and residues 41-59). These results suggest that the positive charge of the amino acid residues at positions 37 and 38 is one of the main factors that maintains the characteristic of the turn and is responsible for the enzyme inhibition by dopamine.  相似文献   

6.
Tanaka T  Kamiya N  Nagamune T 《FEBS letters》2005,579(10):2092-2096
Here, we report the N-terminal glycine (Gly) residue of a target protein can be a candidate primary amine for site-specific protein conjugation catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Gly5-enhanced green fluorescent protein (EGFP) (EGFP with five additional Gly residues at its N-terminus) was cross-linked with Myc-dihydrofolate reductase (DHFR) (DHFR with the myc epitope sequence at its N-terminus) to yield DHFR-EGFP heterodimers. The reactivities of additional peptidyl linkers were investigated and the results obtained suggested that at least three additional Gly residues at the N-terminus were required to yield the EGFP-DHFR heterodimeric form. Site-directed mutagenesis analysis revealed marked preference of MTG for amino acids adjacent to the N-terminal Gly residue involved in the protein conjugation. In addition, peptide-protein conjugation was demonstrated by MTG-catalyzed N-terminal Gly-specific modification of a target protein with the myc epitope peptide.  相似文献   

7.
Recombinant human nerve growth factor (rhNGF) was expressed and secreted by Chinese hamster ovary cells and purified to homogeneity using ion-exchange and reversed-phase (RP) chromatography. The isolated product was shown to be consistent with a 120-amino-acid residue polypeptide chain by amino acid composition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), RP-HPLC, and mass spectrometry and with an N-terminal sequence consistent with that expected from the cDNA for human nerve growth factor. By size-exclusion chromatography, rhNGF behaves like a noncovalent dimer. Limited enzymatic digests of the 120-residue monomer produced additional species of 118 (trypsin, removal of the C-terminal Arg119-Ala120 sequence) and 117 (trypsin plus carboxypeptidase B, removal of the C-terminal Arg118-Arg119-Ala120 sequence) residues. Each of these species was isolated by high-performance ion-exchange chromatography and characterized by amino acid and N-terminal sequence analyses, SDS-PAGE, RP-HPLC, and mass spectrometry. All three species were present in the digests as both homodimeric and heterodimeric combinations and found to be equipotent in both the chick dorsal root ganglion cell survival and rat pheochromocytoma neurite extension assays.  相似文献   

8.
The complete amino acid sequence of rye seed chitinase-a (RSC-a) has been analyzed. RSC-a was cleaved with cyanogen bromide and the resulting three fragments, CB1, CB2, and CB3, were separated by gel filtration. The amino acids of the N-terminal fragment CB1 were sequenced by analyzing the peptides produced by digestion with trypsin, lysylendopeptidase, or pepsin of reduced S-carboxymethyl ated or S-aminoethylated CB1. The sequences of fragments CB2 and CB3 were established by sequencing the tryptic peptides from reduced S-carboxymethylated CB2 and CB3, and by aligning them with the sequence of rye seed chitinase-c (RSC-c) to maximize sequence homology. The complete amino acid sequence of RSC-a was established by connecting these three fragments.

RSC-a consists of 302 amino acid residues including hydroxyproline residues, and has a molecular mass of 31,722 Da. RSC-a is basic protein with a cysteine-rich amino terminal domain, indicating that this enzyme belongs to class I chitinases. The amino acid sequence of RSC-a showed that the sequence from Gly60 to C-terminal Ala302 in this enzyme corresponds to that of RSC-c belonging to class II chitinases with 92% identity, and that RSC-a has high similarity to other plant class I chitinases but a longer hinge region and an extra disulfide bond.  相似文献   

9.
Tyrosine hydroxylase (TH), which converts L-tyrosine to L-DOPA, is a rate-limiting enzyme in the biosynthesis of catecholamines; its activity is regulated by feedback inhibition by catecholamine products including dopamine. To investigate the specific portion of the N-terminus of TH that determines the efficiency of dopamine inhibition, wild-type and N-terminal 35-, 38-, and 44-amino acid-deleted mutants (del-35, del-38, and del-44, respectively) of human TH type 1 were expressed as a maltose binding protein fusion in Escherichia coli and purified as a tetrameric form by affinity and size-exclusion chromatography. The fused-form wild-type enzyme possessed almost the same specific enzymatic activity as the previously reported recombinant nonfused form. Although maximum velocities of all N-terminus-deleted forms were about one-fourth of the wild-type value, there was no difference in Michaelis constants for L-tyrosine or (6R)-(L-erythro-1',2'-dihydroxypropyl)-2-amino-4-hydroxy-5,6,7,8-tetrahy dropteridine (6RBPH4) among the four enzymes. The iron contents incorporated into the three N-terminus-deleted mutants were significantly lower than that of wild type. However, there was no substantial difference in incorporated iron contents among the three mutants. The deletion of up to no less than 38 amino acid residues in the N-terminus made the enzyme more resistant to dopamine inhibition than the wild-type or del-35 TH form. Dopamine bound to the del-38 more than to the del-35 TH form. However, when incubation with dopamine was followed by further inhibition with the cofactor 6RBPH4 dopamine was expelled more readily from the del-38 than from the del-35 TH form. These observations suggest that the amino acid sequence Gly36-Arg37-Arg38 plays a key role in determining the competition between dopamine and 6RBPH4 and affects the efficiency of dopamine inhibition of the catalytic activity.  相似文献   

10.
Wang B  Brown KC  Lodder M  Craik CS  Hecht SM 《Biochemistry》2002,41(8):2805-2813
The design and synthesis of a novel iodine-labile serine protease inhibitor was realized by the use of an ecotin analogue containing allylglycine at position 84 in lieu of methionine. Allylglycine-containing ecotins were synthesized by in vitro translation of the ecotin gene containing an engineered nonsense codon (TAG) at the positions of interest. A misacylated suppressor tRNA activated with the unnatural amino acid allylglycine was employed for the suppression of the nonsense codons in a cell-free protein biosynthesizing system, permitting the elaboration of ecotin analogues containing allyglycine at the desired sites. The derived ecotin analogues were capable of inhibiting bovine trypsin with inhibitory constants (K(i)s) comparable to that of wild-type ecotin. Iodine treatment of ecotin analogue Met84(A)Gly resulted in the deactivation of ecotin, caused by peptide backbone cleavage at its P1 reactive site. Upon iodine treatment, active trypsin could be released from the protein complex with ecotin analogue Met84(A)Gly. This constitutes a novel strategy for modulation of serine protease activity and more generally for alteration of protein-protein interaction by a simple chemical reagent.  相似文献   

11.
Specific transformations at the N-terminal region of phospholipase A2.   总被引:1,自引:0,他引:1  
A J Slotboom  G H de Haas 《Biochemistry》1975,14(25):5394-5399
Treatment of porcine pancreatic prophospholipase A2 with methyl acetimidate converted all lysine residues into epsilon-acetimidolysine residues. Enzymatically active epsilon-amidinated phospholipase A2 (AMPA) was obtained from the epsilon-amidinated zymogen by limited tryptic proteolysis cleaving the Arg7-Ala8 bond. AMPA was used to prepare des-Ala8-, des-(Ala8,Leu9)- and des-(ALa8),Leu9,Trp10)-AMP by successive Edman degradations, and des-(A la 8-Arg13)-AMPA by selective splitting of the Arg13-Ser14 bond by trypsin. Structural analogues of AMPA with different N-terminal amino acid residues, viz., D-Ala, beta-Ala, and Gly, have been prepared by reacting des-Ala8-AMPA with the corresponding N-t-Boc-N-hydroxysuccinimide esters of these amino acids. Similarly, the only Trp10 residue has been substituted for Phe by coupling of des-(Ala8-,Leu9,Trp10)-AMPA with N-t-Boc-L-Ala-L-Leu-L-Phe-N-hydroxysuccinimide ester. The feasibility of these substitutions has been proven unambiguously by the retroconversion of des-Ala8-AMPA and of [Ala7]AMPA into AMPA having identical enzymatic activity as the starting AMPA. The single Trp10 residue in native phospholipase A2 and its zymogen was specifically sulfenylated using 0-nitrophenyl-sulfenyl chloride. The homogenous proteins were kinetically analyzed using short-chain lecithins in the monomeric and micellar region. All modified AMPA analogues, except those in which two or more of the N-terminal amino acid residues are removed, show enzymatic activities toward monermic substrate comparable to that of AMPA, indicating that the active site region is still intact. Only [Gly8]-, [beta-Ala8]-, and [Ala8,Leu9,Phe10]AMPA exhibit a dramatic increase in enzymatic activity similar to that of AMPA upon passing the critical micellar concentration (cmc) of the substrate. From these results it can be concluded that the N-terminal region of the enzyme requires a very precise architecture in order to interact with lipid-water interfaces and consequently to display its full enzymatic activity.  相似文献   

12.
Although lactoferrin is known as a basic soluble glycoprotein, the presence of the membrane-bound form of this protein has also been demonstrated in human milk. Membrane-bound lactoferrin was extracted from the human milk fat globule membrane with a detergent mixture of 1% Tween-20, 0.5% C12E8, and 0.5 M KCl in 20 mM Tris-HCl (pH 7.4). Lactoferrin in the detergent-soluble fraction was purified by affinity chromatography with Concanavalin A and by hydrophobic chromatography with phenyl-Superose. The purified protein gave a single band of 80 kDa by SDS-PAGE. Its N-terminal amino acid sequence was consistent with that of human lactoferrin.  相似文献   

13.
A fragment of ribosomal protein L18 was prepared by limited trypsin digestion of a specific complex of L18 and 5S RNA. It was characterised for sequence and the very basic N-terminal region of the protein was found to be absent. No smaller resistant fragments were produced. 5S RNA binding experiments indicated that the basic N-terminal region, from amino acid residues 1 to 17, was not important for the L18-5S RNA association. Under milder trypsin digestion conditions three resistant fragments were produced from the free protein. The largest corresponded to that isolated from the complex. The smaller ones were trimmed slightly further at both N- and C-terminal ends. These smaller fragments did not reassociate with 5S RNA. It was concluded on the basis of the trypsin protection observations and the 5S RNA binding results that the region extending from residues 18 to 117 approximates to the minimum amount of protein required for a specific and stable protein-RNA interaction. The accessibility of the very basic N-terminal region of L18, in the L18-5S RNA complex, suggests that it may be involved, in some way, in the interaction of 5S RNA with 23S RNA.  相似文献   

14.
N-terminal acetylation in the yeast Saccharomyces cerevisiae is catalysed by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain the catalytic subunits Ard1p, Nat3p and Mak3p, respectively. Yeast 6-phosphofructo-2-kinase (PFK2) was found to be acetylated at the amino acid lysine 3. The Lys3-Arg mutant was not acetylated and the mutation causes a slight decrease in enzyme activity. PFK2 from yeast cells exposed to hypo-osmotic stress is known to be phosphorylated at Ser8 and Ser652 (Dihazi et al., 2001a). We have taken a mass spectrometric approach to investigate the influence of PFK2 acetylation on its phosphorylation. Wild-type PFK2 and the Lys3-Arg mutant were purified from hypo-osmotically stressed cells and analysed with MALDI-TOF MS for phosphorylation. Wild-type PFK2 without any tag sequence was found to be acetylated and two times phosphorylated at the N-terminal peptide T(1-40) carrying the acetylation. The same results were observed with C-terminally His-tagged PFK2. When the His-tag was added to the N-terminus of the protein PFK2, acetylation was found to be incomplete and only one phosphate was incorporated in the peptide T(1-41). The Lys3-Arg mutant of PFK2 was not at all post-translationally modified at the N-terminal peptide. Our data indicate that Lys3 acetylation affects the N-terminal phosphorylation of PFK2 under hypo-osmotic stress.  相似文献   

15.
A peptide derived from rat urinary prokallikrein by trypsin treatment comprised 7 amino acids, the sequence (Ala-Pro-Pro-Val-Gln-Ser-Arg) of which was identical with that of the N-terminal region in prokallikrein. Thus, with trypsin treatment, rat urinary prokallikrein is converted to the active form with the release of the N-terminal propeptide consisting of 7 amino acids. An Arg-1-Val+1 bond in the prokallikrein was found to be the site of proteolytic cleavage of the propeptide.  相似文献   

16.
We constructed a plasmid, designated pNPP126, containing a DNA sequence encoding a fusion protein composed of Bacillus amyloliquefaciens neutral protease prepeptide (signal peptide) and human pancreatic secretory trypsin inhibitor (hPSTI), where the mature hPSTI is accurately fused to the 3'-terminal of the prepeptide coding region. It was observed that the strain Bacillus subtilis MT600 harboring pNPP126 could secrete a trypsin inhibitory activity into the culture medium. The N-terminal amino acid sequence, the amino acid composition and the stoichiometry of the purified hPSTI produced by B. subtilis were the same as those of natural hPSTI, indicating that the transformant B. subtilis MT600 (pNPP126) could efficiently secrete the correctly processed and folded hPSTI into the culture medium.  相似文献   

17.
The ribonucleoprotein complex between 5-S RNA and its binding protein (5-S RNA . protein complex) of yeast ribosomes was released from 60-S subunits with 25 mM EDTA and the protein component was purified by chromatography on DEAE-cellulose. This protein, designated YL3 (Mr = 36000 on dodecylsulfate gels), was relatively insoluble in neutral solutions (pH 4--9) and migrated as one of four acidic 60-S subunit proteins when analyzed by the Kaltschmidt and Wittman two-dimensional gel system. Amino acid analyses indicated lower amounts of lysine and arginine than most ribosomal proteins. Sequence homology was observed in the N terminus of YL3, and two prokaryotic 5-S RNA binding proteins, EL18 from Escherichia coli and HL13 from Halobacterium cutirubrum: Ala1-Phe2-Gln3-Lys4-Asp5-Ala6-Lys7-Ser8-Ser9-Ala10-Tyr11-Ser12-Ser13-Arg14-Phe15-Gln16-Tyr17-Pro18-Phe19-Arg20-Arg21-Arg22-Arg23-Glu24-Gly25-Lys26-Thr27-Asp28-Tyr29-Tyr35; of particular interest was homology in the cluster of basic residues (18--23). Since the protein contained one methionine residue it could be split into two fragments, CN1 (Mr = 24700) and CN2 (Mr = 11300) by CNBr treatment; the larger fragment originated from the N terminus. The N-terminal amino acid sequence of CN2 shared a limited sequence homology with an internal portion of a second 5-S RNA binding protein from E. coli, EL5, and, based also on the molecular weights of the proteins and studies on the protein binding sites in 5-S RNAs, a model for the evolution of the eukaryotic 5-S RNA binding protein is suggested in which a fusion of the prokaryotic sequences may have occurred. Unlike the native 5-S RNA . protein complex, a variety of RNAs interacted with the smaller CN2 fragment to form homogeneous ribonucleoprotein complexes; the results suggest that the CN1 fragment may confer specificity on the natural 5-S RNA-protein interaction.  相似文献   

18.
Oxolinic acid (OA) resistance in field isolates of Burkholderia glumae, a causal agent of bacterial grain rot, is dependent on an amino acid substitution at position 83 in GyrA (GyrA83). In the present study, among spontaneous in vitro mutants from the OA-sensitive B. glumae strain Pg-10, we selected OA-resistant mutants that emerged at a rate of 5.7 x 10(-10). Nucleotide sequence analysis of the quinolone resistance-determining region in GyrA showed that Gly81Cys, Gly81Asp, Asp82Gly, Ser83Arg, Asp87Gly, and Asp87Asn are observed in these OA-resistant mutants. The introduction of each amino acid substitution into Pg-10 resulted in OA resistance, similar to what was observed for mutants with the responsible amino acid substitution. In vitro growth of recombinants with Asp82Gly was delayed significantly compared to that of Pg-10; however, that of the other recombinants did not differ significantly. The inoculation of each recombinant into rice spikelets did not result in disease. In inoculated rice spikelets, recombinants with Ser83Arg grew less than Pg-10 during flowering, and growth of the other recombinants was reduced significantly. On the other hand, the reduced growth of recombinants with Ser83Arg in spikelets was compensated for under OA treatment, resulting in disease. These results suggest that amino acid substitutions in GyrA of B. glumae are implicated in not only OA resistance but also fitness on rice plants. Therefore, GyrA83 substitution is thought to be responsible for OA resistance in B. glumae field isolates.  相似文献   

19.
This study reports on the synthesis of two fluorescent analogues of thymopentin (TP-5; Arg-Lys-Asp-Val-Tyr). A fluorescein isothiocyanate labeled analogue (FITC-TP-5) and a stilbene isothiocyanate labeled analogue (SITS-TP-5) were extensively purified by ion-exchange and gel filtration chromatography. Characterization of the coupling site through amino acid analysis, dansylation and N-terminal cleavage of the fluorescent amino acid yielded results which indicated that both were mono-labeled analogues derivatized at the N-terminal. These analogues were shown to be TP-5-like in nature by their ability to induce the expression of the Thy 1.2 surface marker on nude mouse prothymocytes in both in vivo and in vitro assays. In addition, these analogues were able to inhibit the specific binding of radiolabeled TP-5 to human lymphocytes. Initial studies describing the interaction of FITC-TP-5 with human lymphocytes are shown.  相似文献   

20.
The complete amino acid sequence of cassowary (Casuarius casuarius) goose type lysozyme was analyzed by direct protein sequencing of peptides obtained by cleavage with trypsin, V8 protease, chymotrypsin, lysyl endopeptidase, and cyanogen bromide. The N-terminal residue of the enzyme was deduced to be a pyroglutamate group by analysis with a LC/MS/MS system equipped with the oMALDI ionization source, and then confirmed by a glutamate aminopeptidase enzyme. The blocked N-terminal is the first reported in this enzyme group. The positions of disulfide bonds in this enzyme were chemically identified as Cys4-Cys60 and Cys18-Cys29. Cassowary lysozyme was proved to consist of 185 amino acid residues and had a molecular mass of 20408 Da calculated from the amino acid sequence. The amino acid sequence of cassowary lysozyme compared to that of reported G-type lysozymes had identities of 90%, 83%, and 81%, for ostrich, goose, and black swan lysozymes, respectively. The amino acid substitutions at PyroGlu1, Glu19, Gly40, Asp82, Thr102, Thr156, and Asn167 were newly detected in this enzyme group. The substituted amino acids that might contribute to substrate binding were found at subsite B (Asn122Ser, Phe123Met). The amino acid sequences that formed three alpha-helices and three beta-sheets were completely conserved. The disulfide bond locations and catalytic amino acid were also strictly conserved. The conservation of the three alpha-helices structures and the location of disulfide bonds were considered to be important for the formation of the hydrophobic core structure of the catalytic site and for maintaining a similar three-dimensional structure in this enzyme group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号