首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Different forms of acetylcholinesterase (AChE), EC 3.1.1.7, were demonstrated in human brain caudate nucleus. One form was solubilized at high ionic strength, the other with Triton X-100. The detergent-extractable form was purified to homogeneity by affinity chromatography. This form of AChE is amphiphile-dependent; i.e., it was active only in the presence of amphiphiles (detergents or lipids). Further, the enzyme was shown to bind detergents and to interact hydrophobically with Phenyl-Sepharose. In the presence of detergents the enzyme is a tetramer (subunit molecular weight, 78,000) which aggregates on the removal of detergents. Human brain AChE showed a reaction of identity with human erythrocyte AChE in crossed-line immunoelectrophoresis. The high-salt-soluble brain enzyme did not cross-react with the erythrocyte enzyme. The two classes of AChE seem not to be related, as they show no common antigenic determinant.  相似文献   

2.
Acetylcholinesterase (AChE; EC 3.1.1.7) extracted in 1% Triton X-100 from rabbit brain was purified 2,000-fold by chromatography on agarose conjugated with a monoclonal antibody directed against human red blood cell cholinesterase. After elution from the immunoadsorbent with pH 11 buffer, the preparation was purified further by affinity chromatography on phenyltrimethylammonium-Sepharose 4B with decamethonium elution. Overall yield of purified enzyme was 37% of the AChE originally solubilized, with a specific activity of 2,950 units/mg protein. Electrophoresis under reducing conditions in 7.5% sodium dodecyl sulfate polyacrylamide gels revealed only one silver-staining polypeptide band. A streamlined purification procedure enabled the isolation of electrophoretically homogeneous AChE to be completed in fewer than 7 days, at yields exceeding 50%. Electrophoretic analysis of purified AChE indicated an apparent MW of 71,000 for the monomeric subunit. Gel filtration and sucrose density gradient centrifugation in the presence of Triton X-100 showed little difference between the properties of the native and the purified enzyme. The molecular mass of the main species was estimated from the gel filtration and sedimentation data to be 280,000 daltons. Kinetic parameters of the purified protein (Km = 0.16 +/- 0.01 mM) were close to those of the native enzyme (Km = 0.12 +/- 0.01 mM) when examined with acetylthiocholine iodide as substrate. The two-step immunopurification procedure presented in this communication offers a convenient route to homogeneous neural AChE in quantities useful for detailed biochemical and immunochemical study.  相似文献   

3.
Acid Sphingomyelinase of Human Brain: Purification to Homogeneity   总被引:2,自引:2,他引:0  
Abstract: Acid sphingomyelinase (sphingomyelin phosphodiesterase, EC 3.1.4.12) was purified from human brain by extraction with 0.1% Triton X-100, followed by sequential chromatography on Concanavalin A-Sepharose, octyl-Sepharose, hydroxylapatite, DEAE-cellulose, red A-agarose, Sephadex G-200, and DEAE-cellulose with ampholyte elution. Sphingomyelinase activity was purified more than 20,000-fold from the starting homogenate with a 1% yield. Specific activity of up to 800 μmol/h/mg protein could be achieved. Gel electrophoresis with 6% polyacrylamide containing sodium dodecyl sulfate gave a single protein band with a molecular weight of 70,000, in good agreement with the molecular weight previously estimated from sucrose density gradient centrifugation in 0.1% Triton X-100. Triton X-100 could be readily removed from the enzyme by sucrose density gradient centrifugation. The Triton-free enzyme showed the same K m and pH optimum. Heat stability of the enzyme was reversibly affected by Triton X-100, in that removal of the detergent made the enzyme more heat labile. The K m of purified enzyme for sphingomyelin was 36 μ M . It was unaffected by sulfhydryl reagents, but was inhibited by dithiothreitol at high concentrations. The preparation was free of all lysosomal hydrolase activities tested, including galactosylceramidase and α-mannosidase, which tended to copurify in our previous procedure. The enzyme was inactive toward sphingosylphosphorylcholine. It was active with bis[ p -nitrophenyll- and bis[4-methylumbelliferyl]phosphate and the chromogenic and fluorogenic sphingomyelin analogues.  相似文献   

4.
Abstract: An improved procedure of the solubilization and purification of 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNPase) from bovine cerebral white matter is reported. To remove easily extractable protein, the tissue was homogenised in 10 vol. of 0.5 M-ammonium acetate containing 10 mM-Tris. HCI, pH 6.9, at 4°C and centrifuged at 105,000 g for 60 min. The precipitate was extracted with 10 vol. of 0.5% Triton X-100 containing 10 mM-Tris. HCI, pH 6.9, and centrifuged, By this extraction, over 70% soluble protein could be removed in the supernatant and most CNPase activity was kept in the precipitate. The precipitate was extracted with 10 vol. of 1% Triton X-100 and 1 M-ammonium acetate mixture containing 10 mM-Tris.HCI, pH 8.2, and centrifuged at 105,000 g for 60 min. The extract contained 54% of CNPase and the specific activity was fivefold that of the original homogenate. Subsequently, the extractions were carried out with 2% Triton X-100-2 M-ammonium acetate and 4% Triton X-100-4 M-ammonium acetate at pH 8.2. The recovery of CNPase was found to be nearly 90% from the original homogenate, without loss of enzyme activity during extraction, while much CNPase activity was lost when guanidinium chloride was used as the extraction medium. Using the Triton X-100-ammonium acetate extract, several column chromatography techniques were applied to purify the enzyme. In the first step, Phenyl-Sepharose CL-4B column chromatography was performed by eluting with a double-linear gradient of ammonium acetate and Triton X-100. In the second step, the fraction containing CNPase after Phenyl-Sepharose CL-4B column chromatography was applied to a Sepharose 6B column and the enzyme was eluted with 1% Triton X-100- I M-ammonium acetate, pH 8.2. The peak containing CNPase was applied to CM-Sepharose CL-6B column chromatography in the final step. The enzyme was eluted with a linear gradient of KCI. In this step, CNPase eluted as a sharp peak and the specific activity was approximately 2300 pmol 2′-AMP formed/min/mg protein. The recovery of CNPase from the original homogenate was about 50%. By the isoelectrofocusing technique, the pI of CNPase was found to be 8.6. When Reisfeld polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis were carried out on the purified CNPase, only one protein band, corresponding to CNPase activity, was detected. Its molecular weight was estimated to be approximately 51,000 as the active enzyme form. K, value of the purified enzyme for 2′,3′-CAMP calculated from a Lineweaver-Burk plot was 3.13 mM.  相似文献   

5.
The mechanisms of activation of acetylcholinesterase (AChE) in the homogenates of rat and frog forebrains and medullae oblongatae under effects of non--ionic detergents (Triton X-100 and Tw-en 80) were studied. Titration of the active centers of enzyme by the highly selective phosphoorganic inhibitor HD-42 showed that the inhibitor-induced activation is due to the appearance of previously masked active sites of the enzyme. Activation of AChE in the homogenates of rat brain medulla oblongata was caused by lysis of the structural elements of nervous tissue which were not destroyed by homogenization. Another mechanism of AChE activation by the detergents (frog brain homogenate) is the destruction of the vesicular membrane structures present in the homogenate with AChE centers located on the inner surface of the vesicles.  相似文献   

6.
Incubation of membranes derived from sarcotubular system of rabbit skeletal muscle with increasing concentrations of Triton X-100 produced both stimulation of the AChE activity and solubilization of this enzyme. Mild proteolytic treatment of microsomal membranes produced a several fold activation of the still membrane-bound acetylcholinesterase (AChE) activity. Attempts were made to solubilize AChE from microsomal membranes by proteolytic treatment. About 30–40% of the total enzyme activity could be solubilized by means of trypsin or papain. Short trypsin treatment of the microsomal membranes produced first an activation of the membrane-bound enzyme followed by solubilization. Incubation of muscle microsomes for a short time with papain yielded a significant portion of soluble enzyme. Membrane-bound enzyme activation was measured after a prolonged incubation period. These results are compared with those of solubilization obtained by treatment of membranes with progressive concentrations of Triton X-100. The occurrence of molecular forms in protease-solubilized AChE was investigated by means of centrifugation analysis and slab gel electrophoresis. Centrifugation on sucrose gradients revealed two main components of 4.4S and 10–11S in either trypsin or papain-solubilized AChE. These components behaved as hydrophilic species whereas the Triton solubilized AChE showed an amphipatic character. Application of slab gel electrophoresis showed the occurrence of forms with molecular weights of 350,000; 175,000; 165,000; 85,000 and 76,000. The stimulation of membrane-bound AChE by detergents or proteases would indicate that most of the enzyme molecules or their active sites are sequestered into the lipid bilayer through lipid-protein or protein-protein interactions and these are broken by proteolytic digestion of the muscle microsomes.  相似文献   

7.
We have described recently an acetylcholinesterase (AChE) knockout mouse. While comparing the tissue distribution of AChE and butyrylcholinesterase (BChE), we found that extraction buffers containing Triton X-100 strongly inhibited mouse BChE activity. In contrast, buffers with Tween 20 caused no inhibition of BChE. Conventional techniques grossly underestimated BChE activity by up to 15-fold. In Tween 20 buffer, the intestine, serum, lung, liver, and heart had higher BChE than AChE activity. Only brain had higher AChE than BChE activity in AChE +/+ mice. These findings contradict the dogma, based mainly on observations in Triton X-100 extracts, that BChE is a minor cholinesterase in animal tissues. AChE +/- mice had 50% of normal AChE activity and AChE -/- mice had none, but all mice had similar levels of BChE activity. BChE was inhibited by Triton X-100 in all species tested, except rat and chicken. Inhibition was reversible and competitive with substrate binding. The active site of rat BChE was unique, having an arginine in place of leucine at position 286 (human BChE numbering) in the acyl-binding pocket of the active site, thus explaining the lack of inhibition of rat BChE by Triton X-100. The generally high levels of BChE activity in tissues, including the motor endplate, and the observation that mice live without AChE, suggest that BChE has an essential function in nullizygous mice and probably in wild-type mice as well.  相似文献   

8.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

9.
Protease-activated protein kinase in rat liver plasma membrane   总被引:3,自引:0,他引:3  
Upon limited proteolysis with trypsin, a cAMP and Ca2+-independent protein kinase was produced from rat liver plasma membrane. This enzyme showed a multifunctional capacity and phosphorylated calf thymus histone and rat liver ribosomal proteins. The molecular weight was estimated to be 5.0 X 10(4). When plasma membrane was treated with a buffer containing Triton X-100, a proenzyme with a molecular weight of 8.4 X 10(4) was extracted. By tryptic digestion, the proenzyme was converted to an active protein kinase which was similar to the enzyme obtained by the direct digestion of membrane. However, this proenzyme phosphorylated H1 histone in the presence of Ca2+ and phospholipid without proteolytic digestion. These results indicate the existence of a protease-activated protein kinase in rat liver plasma membrane and the proenzyme seems to be same as protein kinase C.  相似文献   

10.
The enzyme, alkyldihydroxyacetone-P synthase, has been solubilized and partially purified from microsomal preparations of Ehrlich ascites cells after treatment with Triton X-100 and phospholipase C, followed by chromatography on Sepharose 4B. When the Triton X-100 was removed after solubilization the enzyme was still active but eluted in the void volume of the Sepharose 4B column, whereas in the presence of detergent it eluted much later as a single peak of activity, indicating that the solubilized enzyme tends to aggregate unless detergent is present. The lower molecular weight form of alkyldihydroxyacetone-P synthase (in detergent) had an estimated molecular mass of 250,000–300,000 daltons.  相似文献   

11.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

12.
Partial purification and properties of acid sphingomyelinase from rat liver   总被引:2,自引:0,他引:2  
Acid sphingomyelinase was purified approximately 5,200-fold from the mitochondria-lysosome-enriched particles of rat liver by sequential chromatography on DEAE-cellulose, octyl-Sepharose, Sephacryl S-300, Concanavalin A-Sepharose, and CM-cellulose. The specific activity of this highly purified enzyme was 3.2 mmol per hr per mg protein. The enzyme was active against 2-hexadecanoylamino-4-nitrophenylphosphorylcholine, but bis-4-methylumbelliferyl-phosphate and bis-p-nitrophenyl-phosphate were poor substrates. The preparation was free of Mg2+-dependent neutral sphingomyelinase and eight lysosomal enzymes except for the trace amount of acid phosphatase and beta-galactosidase. Apparent molecular weight of the enzyme was 200,000, estimated by Sephadex G-200 filtration in 0.1% Triton X-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed three major bands corresponding to molecular weights of 45,600, 44,500, and 40,000 with several minor bands. Characterization of the enzyme revealed almost the same properties as those of human tissues reported by other investigators, including pH optimum, requirement of Triton X-100, effects of metal divalent cations, phosphate ion, EDTA, some thiol blocking reagents, and amphophilic drugs.  相似文献   

13.
We have studied the effects of cations and detergents on the structure (molecular weight) and photochemistry of Triton X-100 Photosystem II subchloroplast particles (TSF-IIa). The effect of Mg2+ ions on activity depended on the Triton X-100 content of the preparation. If the residual Triton X-100 was not removed prior to assay, MgCl2 increased the rate of electron transport, acting at a site on the reducing side of Photosystem II. Lowering the pH also increased the rate of electron transport. If the Triton X-100 was removed from the particles, both MgCl2 and NaCl caused a decrease in the rate of electron transport. Addition of Triton X-100 caused a reversible decrease in the number of active Photosystem II reaction centers. Both cations and Triton X-100 had a profound effect on the molecular weight of the Photosystem II particles as determined by gel filtration. At 20 °C, addition of 0.05% Triton X-100 decreased the molecular weight from a high value (≥800,000) to 250,000. At 4 °C, addition of 1 mm MgCl2 or 100 mm NaCl increased the molecular weight of the complex. In the absence of these salts 67% of the protein eluted with a molecular weight of 460,000 (the rest was >800,000-in the void volume). In the presence of these salts all of the material had a molecular weight of ≥800,000. A similar effect was observed when the pH was lowered from 8 to 6. Further work is needed to determine whether there is a correlation between the changes in molecular weight and activity.  相似文献   

14.
Rabbit intestinal trehalase (alpha,alpha-trehalose glucohydrolase, EC 3.2.1.28) was solubilized with Triton X-100 and purified in the presence of EDTA. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis in the presence of Triton X-100 or SDS. It showed amphiphilic properties on gel filtration. polyacrylamide gel electrophoresis, charge-shift electrophoresis and phenyl-Sepharose chromatography. Its molecular weight was estimated to be about 330 000 by gel filtration under nondenaturing conditions and in the presence of Triton X-100, the value being in satisfactory agreement with the sum of the weight of one Triton X-100 micelle and twice the molecular weight (105 000) of purified hydrophilic trehalase which had been deprived of the anchor segment. The two purified trehalases gave almost the same molecular weights (about 75 000) on SDS-polyacrylamide gel electrophoresis. These results suggest that intestinal trehalase consists of two subunits with a molecular weight of 75 000 and that its anchor segment is small (less than 5000). Triton X-100 extracts freshly prepared from intestinal microvilli essentially showed one form of trehalase, which behaved on phenyl-Sepharose and Con A-Sepharose chromatography in the same manner as purified amphiphilic trehalase.  相似文献   

15.
Abstract— Myelin has an unusual lipid composition, being particularly rich in sulfatide. This lipid is synthesized by the transfer of sulfate from phosphoadenosine phosphosulfate to galactocerebroside, catalyzed by galactocerebroside sulfotransferase. This paper describes a sensitive assay for the sulfotransferase (capable of measuring activity in as little as 10 μg of extracted rat brain protein) so that this enzyme can be readily investigated in isolated cells, or the small amounts of tissue available in developing animals. Both manganase (20 m m ) and thiol reagents were required for optimal activity. This assay was used to monitor the purification of the sulfotransferase from rat brain. Extraction of the enzyme from crude homogenates required the nonionic detergent, Triton X-100, at pH 7–7.5. Removal of Triton X-100 from the extracted enzyme resulted in a soluble but less active enzyme, the activity of which could then be restored with detergents. Stability of the detergent-extracted enzyme was investigated, and even at —40°C there was a 20% loss of activity over 10 days. By standard procedures 500-fold purification of the enzyme has been achieved.  相似文献   

16.
The cytoplasmic nitrate reductase in heme mutant H-14 of Staphylococcus aureus was partially purified by steps which included ammonium sulfate fractionation and chromatography on Bio-Gel A 1.5m and ion-exchange columns. The active fractions from the ion-exchange columns showed two forms of the enzyme upon electrophoresis in nondenaturing gels of polyacrylamide; these corresponded to proteins of R(f) 0.16 and 0.28. Each form contained a predominant polypeptide of molecular weight 140,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The R(f) 0.16 form contained another major polypeptide of molecular weight 57,000, but the R(f) 0.28 form contained several other polypeptides. The sedimentation properties of the enzyme were examined after partial purification on Bio-Gel A 1.5m. In sucrose gradients containing Triton X-100 the enzyme sedimented as a homogeneous peak with an estimated molecular weight of 225,000; without detergent a heterogeneous profile was observed of molecular weight greater than 250,000. Treatment of the enzyme with trypsin increased the specific activity, and the enzyme sedimented as a homogeneous peak in sucrose gradients without Triton X-100, with an estimated molecular weight of 202,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that trypsin treatment converted the polypeptide of molecular weight 140,000 to a polypeptide of molecular weight 112,000. We conclude that the cytoplasmic nitrate reductase of S. aureus has a large subunit of molecular weight 140,000, which can be modified by trypsin to a polypeptide of molecular weight 112,000 without loss of catalytic activity.  相似文献   

17.
The acetylcholinesterase from human erythrocytes was released from the plasma membrane with 0.2% Triton X-100 at low ionic strength and purified by two affinity chromatography steps on Sepharose-bound m-[6-(6-amino-caproylamino)caproylamino]phenyltrimethyl-ammonium. The synthesis of the inhibitor is described. The purified, detergent-free acetylcholinesterase was obtained with a specific activity of 4270 U/mg (158000-fold purification) and a 28% yield. The enzyme is a glycoprotein and aggregates in the absence of Triton X-100 into higher molecular complexes. The molecular weight was estimated by sodium dodecylsulfate electrophoresis to be 80000 +/- 3000 in the presence of 2-mercapto-ethanol and 154000 +/- 6000 in its absence.  相似文献   

18.
An extracellular phospholipase D from Actinomadura sp. Strain No. 362 was purified about 430-fold from the culture filtrate. The purified enzyme preparation was judged to be homogeneous on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point of the enzyme were estimated to be about 50,000—60,000 and 6.4, respectively. The enzyme was most active at pH 5.5 and 50°C in the presence of Triton X-100, but showed the highest activity at pH 7.0 and 60 — 70°C in its absence. The enzyme was stable up to 30°C at pH 7.2 and also stable in the pH range of 4.0 to 8.0 on 2 hr incubation at 25°C. With regard to substrate specificity, this enzyme hydrolysed lecithin best among the phospholipids tested. It was activated by Fe3 +, Al3+, Mn2 +, Ca2 +, diethyl ether, sodium deoxycholate and Triton X-100, but was inhibited by cetyl pyridinium chloride and dodecylsulfate.  相似文献   

19.
  • 1.1. Cholinesterase (ChE) of two types—acetylcholinesterase (AChE, acetylcholine hydrolase, EC 3.1.1.7) and propionylcholinesterase (PrChE, acylcholine hydrolase, EC 3.1.1.8)—was found in the brain of the marine gastropod Murex trunculus L. (Prosobranchia).
  • 2.2. PrChE is a soluble enzyme which can be easily extracted by salt solution after freezing-thawing of the untreated brain.
  • 3.3. AChE is membrane-bound. It was solubilized by a 0.2% solution of Triton X-100.
  • 4.4. Some part of AChE (up to 36%) can spontaneously pass into solution.
  • 5.5. The specific activity of AChE in Triton X-100 extracts is 100 ± 10 nmol acetylcholine/mg protein/min.
  • 6.6. Enzyme hydrolysis of acetylcholine (ACh), acetylthiocholine (ATCh) and propionylthiocholine (PrTCh) is suppressed by excess of substrate. Michaelis constants (Km) for their hydrolysis by AChE are 0.33, 0.017 and 0.018 mM, respectively.
  • 7.7. Bimolecular rate constants with organophosphorus inhibitors of different structure points to a similarity of the gastropod brain AChE to the typical enzyme of vertebrates in the structure of the active surface.
  相似文献   

20.
Abstract— The action of Triton X-100 on a membrane preparation from rat brain was studied with reference to the solubilization of acetylcholinesterase and the product was characterized by exclusion chromatography. The AChE and membrane protein were readily solubilized to form particles corresponding to a mol. wt. of about 5 × 105. The solubility of these particles depended on the continued presence of the detergent. It was concluded that these soluble particles formed an intermediate stage in organization between membrane-bound AChE and the soluble protein enzyme, and perhaps represented preexisting lipoprotein subunits of the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号