首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furan is found in various food items and is cytotoxic and carcinogenic in the liver of rats and mice. Metabolism of furan includes the formation of an unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). In view of the multifunctional electrophilic reactivity of BDA, adduct formation with protein and DNA may explain some of the toxic effects. Short-term tests for genotoxicity of furan in mammalian cells are inconclusive, little is known for BDA. We investigated BDA generated by hydrolysis of 2,5-diacetoxy-2,5-dihydrofuran for genotoxicity in L5178Y tk+/− mouse lymphoma cells using standard procedures for the comet assay, the micronucleus test, and the mouse lymphoma thymidine kinase gene mutation assay, using 4-h incubation periods. Cytotoxicity was remarkable: cell viability at concentrations ≥50 μM was reduced to <50%. In the dose range up to 25 μM, viability was >90%. Measures of comet-tail length and thymidine–kinase mutant frequency were increased 1.6- and 2.4-fold above control, respectively. Analysis of three fully independent replicates with a linear mixed-effects model showed a highly significant increase with concentration for both endpoints. Compared to methyl methanesulfonate used as a positive control, BDA was of similar potency with respect to genotoxicity, but it was much more cytotoxic. Furan added to cell cultures at doses that resulted in time-averaged effective concentrations of up to 3100 μM was neither cytotoxic nor genotoxic. A potential cross-linking activity of BDA was investigated by checking whether gamma radiation-induced DNA migration in the comet assay could be reduced by pre-treatment with BDA. In contrast to the effect of the positive control glutaraldehyde, BDA treatment did not reduce the comet tail length. On the contrary, an increase was observed at ≥100 μM BDA, which was attributable to early apoptotic cells. Although BDA was found to be a relatively potent genotoxic agent in terms of the concentration necessary to double the background measures, cytotoxicity strongly limited the concentration range that produced interpretable results. This may explain some of the inconclusive results and indicates that non-genotoxic effects must be taken into account in the discussion of the modes of toxic and carcinogenic action of furan.  相似文献   

2.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

3.
Park JH  Park E 《Mutation research》2011,718(1-2):56-61
Iron is an important element that modulates the production of reactive oxygen species, which are thought to play a causative role in biological processes such as mutagenesis and carcinogenesis. The potential genotoxicity of dietary iron has been seldom studied in human leukocyte and only few reports have investigated in human colon tumor cells. Therefore, DNA damage and repair capacity of human leukocytes were examined using comet assay for screening the potential toxicity of various iron-overloads such as ferric-nitrilotriacetate (Fe-NTA), FeSO(4), hemoglobin and myoglobin, and compared with 200μM of H(2)O(2) and HNE. The iron-overloads tested were not cytotoxic in the range of 10-1000 microM by trypan blue exclusion assay. The exposure of leukocytes to Fe-NTA (500 and 1000 microM), FeSO(4) (250-1000 microM), hemoglobin (10 microM) and myoglobin (250 microM) for 30 min induced significantly higher DNA damage than NC. Treatment with 500 and 1000 microM of Fe-NTA showed a similar genotoxic effect to H(2)O(2), and a significant higher genotoxic effect than HNE. The genotoxicity of FeSO(4) (250-1000 microM), hemoglobin (10 microM) and myoglobin (250 microM) was not significantly different from that of H(2)O(2) and HNE. Iron-overloads generated DNA strand break were rejoined from the first 1h. Their genotoxic effect was not observed at 24h. These data from this study provide additional information on the genotoxicity of iron-overloads and self-repair capacity in human leukocytes.  相似文献   

4.
An Y  Jiang L  Cao J  Geng C  Zhong L 《Mutation research》2007,627(2):164-170
Sudan I, a synthetic lipid soluble azo pigment, is widely used in various industrial fields. However, Sudan I has not been approved at any level of food production, since there are many inconclusive reports relating to its genotoxicity and carcinogenicity in humans. The aim of this study was to assess the genotoxic effects of Sudan I and to identify and clarify the reaction mechanisms by use of human hepatoma HepG2 cells. To study the genotoxic effects of Sudan I, the comet assay and micronucleus test (MNT) were used. In the comet assay and MNT, we found increase of DNA migration and of the micronuclei frequencies at all tested concentrations (25-100 microM) of Sudan I in a dose-dependent manner. The data suggest that Sudan I caused DNA strand breaks and chromosome breaks. To elucidate the underlying mechanism of this difference, we monitored the level of reactive oxygen species (ROS) production with the 2,7-dichlorofluorescein diacetate assay. The level of the oxidative DNA damage and lipid peroxidation was evaluated using immunoperoxidase staining for 8-hydroxydeoxyguanosine (8-OHdG) and by measuring levels of thiobarbituric acid-reactive substances (TBARS). Significantly increased levels of ROS, 8-OHdG and TBARS were observed in HepG2 cells at higher concentrations, the doses being 100, 50-100 and 50-100 microM, respectively. We conclude that Sudan I causes genotoxic effects, probably via ROS-induced oxidative DNA damage at the higher doses.  相似文献   

5.
We recently constructed a Chinese hamster V79-derived cell line that stably expresses human cytochrome P450 (CYP) 2E1 and human sulphotransferase (SULT) 1A1. These enzymes are involved in the bioactivation of numerous promutagens/procarcinogens, but are not taken into account in standard in vitro mutagenicity assays. Various carbohydrate pyrolysis products and other food contaminants that induce tumours or preneoplastic lesions in laboratory animals are inactive or only weakly active in standard in vitro genotoxicity assays. This is the case for acrylamide, furan, 5-hydroxymethylfurfural, nitrofen and N-nitrosodimethylamine. These compounds were investigated for induction of sister chromatid exchange (SCE) in V79-hCYP2E1-hSULT1A1 cells. All test compounds showed positive results over a wide concentration range, starting at 0.01 microM for N-nitrosodimethylamine, 3 microM for furan, 12.5 microM for nitrofen, 20 microM for 5-hydroxymethylfurfural, and 200 microM for acrylamide. The concentration-response curve of furan was unusual, as this compound induced a statistically significant, but rather constant and weak increase in SCE over an extremely wide concentration range (3-16,000 microM). Furan was slightly less active, whereas the remaining compounds were much less active in the parental V79 cell line than in V79-hCYP2E1-hSULT1A1 cells. Compared to many other genotoxic effects, the study of SCE only requires small numbers of cells (and incubation volumes) and usually is detected even at low concentrations of the genotoxicant. Therefore, induction of SCE in V79-hCYP2E1-hSULT1A1 cells may be useful in the genotoxicity testing of preparations of heated food and in their bioassay-directed fractionation.  相似文献   

6.
Dental composite materials contain polymers of methacrylates, which, due to mechanical abrasion and enzymatic action of saliva, may release their monomers into oral cavity and the pulp. Moreover, polymerization is always incomplete and leaves usually considerable fraction of free monomers. Mechanisms of the genotoxicity of methacrylate monomers have been rarely explored. As the polymerization of a monomer is catalyzed by a co-monomer, their combined action should be considered. In the present work, we investigated cytotoxic and genotoxic effects of urethane dimethacrylate (UDMA), often used as a monomer, at 1 mM, and triethylene glycol dimethacrylate (TEGDMA), a typical co-monomer, at 5 mM singly and in combination. Experiments were conducted on Chinese hamster ovary cells. Cell viability, apoptosis and cell cycle were assessed by flow cytometry, whereas DNA damage was evaluated by plasmid conformation test and comet assay. Both compounds decreased the viability of the cells, but did not induce strand breaks in an isolated plasmid DNA. However, both substances, either singly or in combination, damaged DNA in CHO cells as evaluated by comet assay. Both compounds induced apoptosis, but a combined action of them led to a decrease in the number of apoptotic cells. The combined action of UDMA and TEGDMA in the disturbance of cell cycle was lesser compared to the action of each compound individually. Individually, though UDMA and TEGDMA may induce cytotoxic and genotoxic, however, a combination of both does not produce a significant increase in these effects.  相似文献   

7.
Contribution of apoptosis to responses in the comet assay   总被引:9,自引:0,他引:9  
Apoptosis, a physiological process of selected cell deletion, leads to DNA fragmentation in typical segments of 180 base pairs. DNA strand breaks are also an effect induced by genotoxic compounds. The aim of this study was to compare these two types of damaging potentials by a known genotoxic substance and an apoptosis-inducing agent in HT-29 colon adenocarcinoma cells. The cells were incubated for 24h with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a potent DNA damage-inducing agent, staurosporine, an inhibitor of protein kinase C and apoptosis-inducing agent, and hydrogen peroxide, a source of reactive oxygen species. Apoptosis was measured with the Annexin V affinity assay which detects the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the cytoplasmic membrane, an early event in the apoptotic process. DNA damage as an end point of genotoxicity was detected by single cell microgel electrophoresis, also called "comet assay". The results show that apoptosis does not necessarily need to correlate or coincide with DNA damage observed with genotoxic substances in the comet assay. The representative apoptosis-inducing agent (staurosporine) did not induce strand breaks in the tested concentrations (0.5 and 1.0microM); genotoxic doses of the strand break inducing agent MNNG did not induce apoptosis. Therefore, the comet assay can be used as a specific test for detecting genotoxicity, and the results are not necessarily confounded by concomittant processes leading to apoptosis.  相似文献   

8.
2,2,4,7-Tetramethyl-1,2,3,4-tetrahydroquinoline (THQ) is a new synthetic compound with potential antioxidant activity. In this study, cytotoxic, genotoxic and antioxidant activities of THQ were studied on human lymphocytes with the use of the trypan blue exclusion assay, the TUNEL method, the comet assay and the micronucleus test. The activities of THQ were compared with those of a structurally similar compound-ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline, EQ), which is used in animal feeds as a preservative. Cytotoxic effects of THQ were observed after 1-h treatment at the concentration of 500 microM and after 24-h treatments at the concentrations of 250-500 microM. Although the micronucleus test did not reveal a genotoxic effect of THQ, in the comet assay the statistically significant increase in DNA damage was observed as compared with the control. On the other hand, the protection of human lymphocytes against DNA damage induced by hydrogen peroxide suggests an antioxidant activity of THQ. The comparative analysis of THQ and EQ activities performed in these studies revealed that THQ was less cytotoxic and less genotoxic than EQ. Slightly lower antioxidant activity of THQ was also shown in the comet assay when it was used at the lower studied doses (1-5 microM), but for the highest one (10 microM) its efficiency was similar to that of EQ. In the micronucleus assay THQ was more effective than EQ in protecting the cultured lymphocytes from clastogenicity of H2O2. We believe that THQ is worthy of further detailed studies on its antioxidant properties to confirm its usefulness as a preservative.  相似文献   

9.
The genotoxic and cytotoxic potential of lambda-cyhalothrin (LCT), a synthetic pyrethroid insecticide, was investigated on human lymphocytes cultured in vitro. Utilizing the trypan blue dye exclusion technique assay, the LC50 of LCT was found to be 28 microM. Based on the LC50 value, it is seen that LCT was highly toxic to lymphocyte cultures, among other pyrethroid group of pesticides. Chromosomal aberrations induced by LCT were determined using metaphase plate-spreads of lymphocytes. The chromosomal analysis was recorded using Medi-Image software technology. The analysis revealed that more satellite associations and gaps were found, which were statistically significant (p < 0.05) when compared to controls. Comet assay was used to assess the possibility of LCT to induce the damage in DNA, where the increase in comet tail length relates to the extent of DNA single strand breaks. The results presented here indicate that in vitro assays could be used as indicators of cytotoxicity and genotoxicity of the pesticide.  相似文献   

10.
The present study examined the impacts of sodium acetate (SA), sodium acid pyrophosphate (SAPP), and citric acid (CA) on the viability, proliferation, and DNA damage of isolated lymphocytes in vitro. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays were adopted to evaluate cell viability, while comet assay was employed to assess the genotoxic effects. The cells were incubated with different levels of SA (50, 100, and 200 mM), SAPP (25, 50, and 100 mM/L), or CA (100, 200, and 300 μg/mL). The lymphocytes treated with the tested food additives showed concentration‐dependent decreases in both cell viability and proliferation. A concentration‐dependent increase in LDH release was also observed. The comet assay results indicated that SA, SAPP, and CA increased DNA damage percentage, tail DNA percentage, tail length, and tail moment in a concentration‐dependent manner. The current results showed that SA, SAPP, and CA are cytotoxic and genotoxic to isolated lymphocytes in vitro.  相似文献   

11.
Mice and/or rats are usually used to detect chemical carcinogenicity and it has been known that there are species differences in carcinogenicity. To know whether there are species difference in genotoxicity, we conducted comparative investigation of multiple organs of mice and rats in the comet assay. Since the sensitivity to xenobiotics is different for different species, we queried species difference in the genotoxic sensitivity at one equitoxic level but not at one equidose. Therefore, groups of four mice or rats were treated once intraperitoneally or orally with a chemical at highest dose without death and distinct toxic manifestation. When the death was not observed at 2000 mg/kg of a chemical, 2000 mg/kg was used for the comet study. The stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and 24h after treatment. Among chemicals tested, benzyl acetate, chlorodibromomethane and p-chloro-o-toluidine are carcinogenic to mice but not rats, and aniline, azobenzene, o-phenylphenol Na, and D-limonene are carcinogenic to rats but not mice. Although the two species differed in genotoxicity target organs and migration values, the judgement of a positive or negative response was the same for all chemicals studied except for 2,4-dimethoxyaniline, 2,5-diaminotoluene, and p,p'-DDT when chemicals with positive responses in at least one organ are judged to be comet assay-positive. 2,4-Dimethoxyaniline and 2,5-diaminotoluene that are Ames test-positive non-carcinogens in both species were positive in one organ (urinary bladder for 2,4-dimethoxyaniline and stomach for 2,5-diaminotoluene) in rats, but negative in all mouse organs. p,p'-DDT, which is an Ames test-negative but in vitro cytogenetic test-positive hepatic carcinogen in mice and rats, was positive in multiple rat organs, but not in any mouse organ. These results suggest that species differences in genotoxicity at one equitoxic level are not consistent with species difference in carcinogenicity and that the use of both species is appropriate to indicate a carcinogenic potential in the comet assay with multiple organs, when chemicals being positive in at least one organ are judged to be comet assay-positive.  相似文献   

12.
Furan is formed in a variety of heat-treated foods through thermal degradation of natural food constituents. Relatively high levels of furan contamination are found in ground roasted coffee, instant coffee, and processed baby foods. European exposure estimates suggest that mean dietary exposure to furan may be as high as 1.23 and 1.01 μg/kg bw/day for adults and 3- to 12-month-old infants, respectively. Furan is a potent hepatotoxin and hepatocarcinogen in rodents, causing hepatocellular adenomas and carcinomas in rats and mice, and high incidences of cholangiocarcinomas in rats at doses ≥2 mg/kg bw. There is therefore a relatively low margin of exposure between estimated human exposure and doses that cause a high tumor incidence in rodents. Since a genotoxic mode of action cannot be excluded for furan-induced tumor formation, the present exposures may indicate a risk to human health and need for mitigation. This review summarizes the current knowledge on mechanisms of furan formation in food, human dietary exposure to furan, and furan toxicity, and highlights the need to establish the risk resulting from the genotoxic and carcinogenic properties of furan at doses lower than 2 mg/kg bw.  相似文献   

13.
Kim HR  Kim MJ  Lee SY  Oh SM  Chung KH 《Mutation research》2011,726(2):129-135
Many classes of silver nanoparticles (Ag-NPs) have been synthesized and widely applied, but the genotoxicity of Ag-NPs and the factors leading to genotoxicity remain unknown. Therefore, the purpose of this study is to elucidate the genotoxic effects of Ag-NPs in lung and the role of oxidative stress on the genotoxic effects of Ag-NPs. For this, Ag-NPs were completely dispersed in medium by sonication and filtration. The Ag-NPs dispersed in medium were 43-260nm in size. We observed distinct uptake of Ag-NPs into BEAS-2B cells. The Ag-NPs aggregates were wrapped with an endocytic vesicle within the cytoplasm and nucleus of BEAS-2B cells. In the comet assay and micronucleus (MN) assay for BEAS-2B cells, Ag-NPs stimulated DNA breakage and MN formation in a dose-dependent manner. The genotoxic effect of Ag-NPs was partially blocked by scavengers. In particular, of the scavengers tested, superoxide dismutase most significantly blocked the genotoxic effects in both the cytokinesis-block MN assay and the comet assay. In the modified comet assay, Ag-NPs induced a significant increase in oxidative DNA damage. Furthermore, in the oxidative stress assay, Ag-NPs significantly increased the reactive oxygen radicals. These results suggest that Ag-NPs have genotoxic effects in BEAS-2B cells and that oxidative stress stimulated by Ag-NPs may be an important factor in their genotoxic effects.  相似文献   

14.
This survey is a compendium of genotoxicity and carcinogenicity information of antihypertensive drugs. Data from 164 marketed drugs were collected. Of the 164 drugs, 65 (39.6%) had no retrievable genotoxicity or carcinogenicity data; this group was comprised largely of drugs marketed in a limited number of countries. The remaining 99 (60.4%) had at least one genotoxicity or carcinogenicity test result. Of these 99, 48 (48.5%) had at least one positive finding: 32 tested positive in at least one genotoxicity assay, 26 in at least one carcinogenicity assay, and 10 gave a positive result in both at least one genotoxicity assay and at least one carcinogenicity assay. In terms of correlation between results of the various genotoxicity assays and absence of carcinogenic activity in both mice and rats 2 of 44 non-carcinogenic drugs tested positive in the in vitro bacterial mutagenesis assay, 2 of 9 tested positive in the mouse lymphoma assay, none of 14 tested positive for gene mutation at the hprt locus, 5 of 25 tested positive in in vitro cytogenetic assays, none of 31 in in vivo cytogenetic assays, and none of 14 in inducing DNA damage and/or repair in in vitro and/or in vivo assays. Concerning the predictivity of genetic toxicology findings for long-term carcinogenesis assays, 75 drugs had both genotoxicity and carcinogenicity data; of these 37 (49.3%) were neither genotoxic nor carcinogenic, 14 (18.7%) were non-carcinogens which tested positive in at least one genotoxicity assay, 14 (18.7%) were carcinogenic in at least one sex of mice or rats but tested negative in genotoxicity assays, and 10 (13.3%) were both genotoxic and carcinogenic. Only 42 of the 164 marketed antihypertensives (25.6%) had all data required by the guidelines for testing of pharmaceuticals.  相似文献   

15.
Epidemiological findings have indicated that red meat increases the likelihood of colorectal cancer. Aim of this study was to investigate whether hemoglobin, or its prosthetic group heme, in red meat, is a genotoxic risk factor for cancer. Human colon tumor cells (HT29 clone 19A) and primary colonocytes were incubated with hemoglobin/hemin and DNA damage was investigated using the comet assay. Cell number, membrane damage, and metabolic activity were measured as parameters of cytotoxicity in both cell types. Effects on cell growth were determined using HT29 clone 19A cells. HT29 clone 19A cells were also used to explore possible pro-oxidative effects of hydrogen peroxide (H2O2) and antigenotoxic effects of the radical scavenger dimethyl sulfoxide (DMSO). Additionally we determined in HT29 clone 19A cells intracellular iron levels after incubation with hemoglobin/hemin. We found that hemoglobin increased DNA damage in primary cells (> or =10 microM) and in HT29 clone 19A cells (> or =250 microM). Hemin was genotoxic in both cell types (500-1000 microM) with concomitant cytotoxicity, detected as membrane damage. In both cell types, hemoglobin and hemin (> or =100 microM) impaired metabolic activity. The growth of HT29 clone 19A cells was reduced by 50 microM hemoglobin and 10 microM hemin, indicating cytotoxicity at genotoxic concentrations. Hemoglobin or hemin did not enhance the genotoxic activity of H2O2 in HT29 clone 19A cells. On the contrary, DMSO reduced the genotoxicity of hemoglobin, which indicated that free radicals were scavenged by DMSO. Intracellular iron increased in hemoglobin/hemin treated HT29 clone 19A cells, reflecting a 40-50% iron uptake for each compound. In conclusion, our studies show that hemoglobin is genotoxic in human colon cells, and that this is associated with free radical mechanisms and with cytotoxicity, especially for hemin. Thus, hemoglobin/hemin, whether available from red meat or from bowel bleeding, may pose genotoxic and cytotoxic risks to human colon cells, both of which contribute to initiation and progression of colorectal carcinogenesis.  相似文献   

16.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

17.
Wu K  Jiang L  Cao J  Yang G  Geng C  Zhong L 《Mutation research》2007,630(1-2):97-102
Aristolochic acid (AA), extensively used as a traditional herbal medicine, was withdrawn from the market in the last century because it was found to be a potent carcinogen in humans and animals. The aim of this study was to evaluate the genotoxic effect of AA and obtain further insight into whether the nitrative DNA damage can be induced by reactive nitrogen species (RNS), including nitric oxide (NO) and its derivative peroxynitrite (ONOO(-)) using human hepatoma HepG2 cells. To identify the genotoxic effect, the comet assay and micronucleus test (MNT) were performed. In the comet assay, 25-200microM of AA caused a significant increase of DNA migration in a dose-dependent manner. A significant increase of the frequency of micronuclei was found in the range between 12.5 and 50microM in the MNT. The results showed that AA caused DNA and chromosome damages. To elucidate the nitrative DNA damage mechanism, the level of nitrite and 8-hydroxydeoxyguanosine (8-OHdG), which can be generated by ONOO(-), were monitored with the 2,3-diaminonaphthalene (DAN) assay and immunoperoxidase staining, respectively. The results showed that AA causes a significant increase in the levels of NO and formation of 8-OHdG at concentrations >/=50microM. This observation supports the assumption that AA could exert genotoxicity probably via NO and its derivatives at higher concentrations in HepG2 cells.  相似文献   

18.
Hydroquinone (HQ) is found in natural and anthropogenic sources including food, cosmetics, cigarette smoke, and industrial products. In addition to ingestion and dermal absorption, human exposure to HQ may also occur by inhaling cigarette smoke or polluted air. The adverse effects of HQ on respiratory systems have been studied, but genotoxicity HQ on human lung cells is unclear. The aim of this study was to investigate the cytotoxicity and genotoxicity of HQ in human lung alveolar epithelial cells (A549). We found that HQ induced a dose response in cell growth inhibition and DNA damage which was associated with an increase in oxidative stress. Cytotoxicity results demonstrated that HQ was most toxic after 24 h (LC50?=?33 μM) and less toxic after 1 h exposure (LC50?=?59 μM). Genotoxicity of HQ was measured using the Comet assay, H2AX phosphorylation, and chromosome aberration formation. Results from the comet assay revealed that DNA damage was highest during the earlier hours of exposure (1 and 6 h) and thereafter was reduced. A similar pattern was observed for H2AX phosphorylation suggesting that damage DNA may be repaired in later exposure hours. An increase in chromosomal aberration corresponded with maximal DNA damage which further confirmed the genotoxic effects of HQ. To investigate whether oxidative stress was involved in the cytotoxic and genotoxic effects of HQ, cellular glutathione and 8-Oxo-deoguanisone (8-Oxo-dG) formation were measured. A decrease in the reduced glutathione (GSH) and an increase oxidized glutathione (GSSG) was observed during the early hours of exposure which corresponded with elevated 8-Oxo-dG adducts. Together these results demonstrate that HQ exerts its cytotoxic and genotoxic effects in A549 lung cells, probably through DNA damage via oxidative stress.  相似文献   

19.
Adám B  Bárdos H  Adány R 《Mutation research》2005,585(1-2):120-126
This study was carried out with the aim of elucidating the organ-specific effects of ethylene oxide in comparison with the sensitivity of cells from different tissues. An increased incidence of leukemia and lymphoma has been observed in workers exposed to ethylene oxide. However, contradictory findings exist regarding its ability to induce other tumor types, such as breast cancer. We characterized the genotoxicity of ethylene oxide by means of the alkaline version of comet assay in in vitro systems, in order to investigate the hypothesized role of this substance in the development of breast cancer. For this study, we used primary and secondary cultures of lymphoblasts (well-known target cells of the genotoxicity of ethylene oxide), breast epithelial cells (hypothesized target), peripheral blood lymphocytes (cells commonly used in biomonitoring), and of keratinocytes and cervical epithelial cells. DNA damage was measured and expressed as tail DNA, tail length, and tail moment. In the concentration range 0-100 microM, ethylene oxide induced a dose-dependent increase of DNA damage in the investigated cell types without notable cytotoxicity. A statistically significant increase of DNA damage could be observed after treatment with 20 microM ethylene oxide in lymphoblasts (51% increase of tail moment over the background), breast epithelial cells (26% increase) and peripheral lymphocytes (71% increase). In keratinocytes (5% increase) and cervical epithelial cells (5% increase) significant DNA damage could not be detected at this dose, but at higher concentrations (50-100 microM), such an increase was observed. These results are indicative of an increased sensitivity of breast epithelial cells towards genotoxic insults of ethylene oxide. Our observations provide additional data to evaluate the hypothesis that exposure to ethylene oxide may play a role in breast cancer, and the findings may contribute to the development of screening tests for monitoring an early response to genotoxic insults in occupational settings.  相似文献   

20.
To assess genotoxic effects of sodium arsenite (NaAsO2) the single-cell gel electrophoresis (comet assay) had been conducted in various studies indicating genotoxicity. However, DNA fragmentation due to NaAsO2-induced apoptosis may constitute a bias in the interpretation of the results. Apoptotic cells can show typically large and diffuse comets, which are usually excluded during genotoxicity analysis. It is controversial whether there is a time-window in which the apoptotic process generates comets that would falsely be interpreted to be the result of genotoxic DNA damage. Therefore, we evaluated frequency histograms for single-cell measures of tail DNA (% DNA in comet tail) in 30-min intervals after incubation of mouse lymphoma L5178Y cells with sodium arsenite (NaAsO2). In parallel, we evaluated apoptosis by measuring annexin V-positive cells with flow cytometry, and visualized apoptotic cells on slides by Hoechst bisbenzimide 33258 staining. The first observed effect at 30 min after treatment was an increase in annexin V-positive cells. At about 60 min the number of cells with moderate DNA migration increased in the comet-assay analysis. After 90 min, an increase in the number of cells with high levels of DNA migration was observed, which resulted in a bimodal distribution of cells with moderate and high levels of DNA migration. Hoechst-stained apoptotic cells could only be observed at later times (> or = 120 min). This means that the treatment would have been considered to be genotoxic if analysed at 120 min even if the cells with high levels of DNA migration would have been excluded. The occurrence of annexin V-positive cells preceded the appearance of cells with moderate levels of DNA migration. We hypothesize that these cells were early apoptotic cells and not indicative of genotoxic damage. We conclude that DNA-damaging effects of NaAsO2 cannot adequately be interpreted if the comet assay is not accompanied by separate analysis of early endpoints for induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号