首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

2.
Antisense Tiam1 Down-Regulates the Invasiveness of 95D Cells in Vitro   总被引:6,自引:0,他引:6  
Invasion and metastasis are the main death causes oftumor patients, and aberrant expression of some genescontributes to tumor cell invasion and metastasis [1]. Tiam1was firstly identified as a gene amplified by insertedretrovirus which can confer metastat…  相似文献   

3.
Antisense Tiam1 down-regulates the invasiveness of 95D cells in vitro   总被引:3,自引:0,他引:3  
As a specific guanine nucleotide exchange factor of Rac 1, Tiam 1 (T-lymphoma invasion and metastasis inducing protein 1) is involved in a number of cellular events, such as cytoskeleton reorganization, cell adhesion, and cell migration. Since Tiaml was implicated in the invasion and metastasis of T-lymphoma cells and breast tumor cells, we compared the expression level of Tiaml in two human giant-cell lung carcinoma cell strains with high or low metastasis potential, and found that Tiaml expression level in high-metastatic 95D cells was higher than that in low-metastatic 95C cells. To further confirm the role of Tiam I in invasion and metastasis, we constructed the antisense Tiaml expression plasmid (pcDNA3-anti-Tiaml), which was transfected into 95D cells. A stable transfected clone with decreased Tiaml expression was screened and selected for further research. Transwell assay showed that down-regulation of endogenous Tiam1 by anti-Tiam1 can reduce the in vitro invasiveness of 95D cells. Our results suggested that Tiam1 signaling contributed to the invasion and metastasis of the human giant-cell lung carcinoma cells.  相似文献   

4.
The proto-oncogene c-Src has been implicated in the development and progression of a number of human cancers including those of colon and breast. Accumulating evidence indicates that activated alleles of Src may induce cell transformation through Ras-ERK-dependent and -independent pathways. Here we show that Rac1 activity is strongly elevated in Src-transformed cells and that this small G protein is a critical component of the pathway connecting oncogenic Src with cell transformation. We further show that Vav2 and the ubiquitously expressed Rac1 guanine nucleotide exchange factor Tiam1 are phosphorylated in tyrosine residues in cells transfected with active and oncogenic Src. Moreover, phosphorylation of Tiam1 in cells treated with pervanadate, a potent inhibitor of tyrosine phosphatases, was partially inhibited by the Src inhibitor SU6656. Using truncated mutants of Tiam1, we demonstrate that multiple sites can be tyrosine-phosphorylated by Src. Furthermore, Tiam1 cooperated with Src to induce activation of Rac1 in vivo and the formation of membrane ruffles. Similarly, activation of JNK and the c-jun promoter by Src were also potently increased by Tiam1. Together, these results suggest that Vav2 and Tiam1 may act as downstream effectors of Src, thereby regulating Rac1-dependent pathways that participate in Src-induced cell transformation.  相似文献   

5.
Fascin, an actin-bundling protein overexpressed in all carcinomas, has been associated with poor prognosis, shorter survival, and more metastatic diseases. It is believed that fascin facilitates tumor metastasis by promoting the formation of invasive membrane protrusions. However, the mechanisms by which fascin is overexpressed in tumors are not clear. TGFβ is a cytokine secreted by tumor and mesenchymal cells and promotes metastasis in many late stage tumors. The pro-metastasis mechanisms of TGFβ remain to be fully elucidated. Here we demonstrated that TGFβ induced fascin expression in spindle-shaped tumor cells through the canonical Smad-dependent pathway. Fascin was critical for TGFβ-promoted filopodia formation, migration, and invasion in spindle tumor cells. More importantly, fascin expression significantly correlates with TGFβ1 and TGFβ receptor I levels in a cohort of primary breast tumor samples. Our results indicate that elevated TGFβ level in the tumor microenvironment may be responsible for fascin overexpression in some of the metastatic tumors. Our data also suggest that fascin could play a central role in TGFβ-promoted tumor metastasis.  相似文献   

6.
7.
The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway—Patched–Smoothened–Gli—has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH–CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.  相似文献   

8.

Objective

According to the current hypothesis, tumor-associated macrophages (TAMs) are “corrupted” by cancer cells and subsequently facilitate, rather than inhibit, tumor metastasis. Because the molecular mechanisms of cancer cell–TAM interactions are complicated and controversial we aimed to better define this phenomenon.

Methods and Results

Using microRNA microarrays, Real-time qPCR and Western blot we showed that co-culture of canine mammary tumor cells with TAMs or treatment with macrophage-conditioned medium inhibited the canonical Wnt pathway and activated the non-canonical Wnt pathway in tumor cells. We also showed that co-culture of TAMs with tumor cells increased expression of canonical Wnt inhibitors in TAMs. Subsequently, we demonstrated macrophage-induced invasive growth patterns and epithelial–mesenchymal transition of tumor cells. Validation of these results in canine mammary carcinoma tissues (n = 50) and xenograft tumors indicated the activation of non-canonical and canonical Wnt pathways in metastatic tumors and non-metastatic malignancies, respectively. Activation of non-canonical Wnt pathway correlated with number of TAMs.

Conclusions

We demonstrated that TAMs mediate a “switch” between canonical and non-canonical Wnt signaling pathways in canine mammary tumors, leading to increased tumor invasion and metastasis.Interestingly, similar changes in neoplastic cells were observed in the presence of macrophage-conditioned medium or live macrophages. These observations indicate that rather than being “corrupted” by cancer cells, TAMs constitutively secrete canonical Wnt inhibitors that decrease tumor proliferation and development, but as a side effect, they induce the non-canonical Wnt pathway, which leads to tumor metastasis.These data challenge the conventional understanding of TAM–cancer cell interactions.  相似文献   

9.
Aberrant microRNAs (miRNAs) expressions could contribute to the progression of numerous cancers, including esophageal squamous cell carcinoma, while miR-10a participates in multiple biological processes on cancers. However, the molecular mechanism of miR-10a in esophageal squamous cell carcinoma (ESCC) has not been investigated. Herein, miR-10a was significantly reduced in ESCC clinical tissues and ESCC cell lines (EC109 and TE-3). In addition, immunohistochemistry indicated that the expressions of α-SMA, Ki-67, and PCNA in tumor tissues were higher than that of controls. In vitro, overexpression of miR-10a dramatically suppressed cell proliferation and enhanced cell apoptosis, while the decrease of miR-10a expressed the opposite outcome. Specially, overexpression of miR-10a caused a G0/G1 peak accumulation. Moreover, miR-10a also negatively regulated ESCC cell migration and invasion. Furthermore, targetscan bioinformatics predictions and the dual-luciferase assay confirmed that Tiam1 was a direct target gene of miR-10a. The statistical analysis showed Tiam1 was negatively in correlation with miR-10a in ESCC patient samples. And silencing Tiam1 could lead to a decline on cell growth, invasion, and migration in ESCC cell lines, while it could enhance cell apoptosis and cause a G0/G1 peak accumulation. In vivo, it revealed that miR-10a notably decreased the tumor growth and metastasis in xenograft model and pulmonary metastasis model. And it showed a lower expressions of Tiam1 in the miR-10a mimics group by immunohistochemistry. Taken together the results, they indicated that miR-10a might function as a novel tumor suppressor in vitro and in vivo via targeting Tiam1, suggesting miR-10a to be a candidate biomarker for the ESCC therapy.  相似文献   

10.
Several guanine nucleotide exchange factors for the Rho family of GTPases that induce activation by exchanging GDP for GTP have been identified. One of these is the tumor invasion gene product Tiam1, which acts on Rac1. In this study, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid induce the translocation of Tiam1 to the membrane fraction of NIH 3T3 fibroblasts in a time-dependent manner. Previously, we have shown that Tiam1 is phosphorylated by protein kinase C (PKC) and calcium/calmodulin kinase II (CaMK II) after stimulation with agonists. Here we show, by pretreatment of cells with kinase inhibitors, that CaMK II, but not PKC, is involved in the membrane translocation of Tiam1. Addition of the calcium ionophore ionomycin alone induced the translocation of Tiam1. However, the cell-permeable diacylglycerol oleoylacetylglycerol was without effect and did not enhance the effect of ionomycin. These data further indicated a role for CaMK II and not PKC. Inhibition of phosphoinositide 3-kinase by wortmannin had little effect on the translocation of Tiam1. The role of phosphorylation was further studied by comparing the phosphorylation pattern of Tiam1 in the membranes versus whole cell Tiam1. PDGF-induced phosphorylation of membrane-associated Tiam1 occurred more rapidly than that of the total Tiam1 pool, and CaMK II, but not PKC, played a significant role in this process. Furthermore, by using the p21-binding domain of PAK-3, we show that PDGF, but not lysophosphatidic acid, activates Rac1 in vivo and that this activation involves CaMK II and PKC, but not 3-phosphoinositides. Our results indicate that Tiam1 is translocated to and phosphorylated at membranes after agonist stimulation and that CaMK II, but not PKC, is involved in this process. Also, these kinases are involved in the activation of Rac in vivo.  相似文献   

11.
Nowadays, some evidences demonstrate that human mesenchymal stem cells (hMSCs) favor tumor growth; however, others show that hMSCs can suppress tumorigenesis and tumor growth. With the indeterminateness of the effect of hMSCs on tumors, we investigated the effect of hMSCs on lung cancer cell line A549 and esophageal cancer cell line Eca-109 in vitro and in vivo. Our results revealed that hMSCs inhibited the proliferation and invasion of A549 and Eca-109 cells, arrested tumor cells in the G1 phase of the cell cycle and induced the apoptosis of tumor cells in vitro by using a co-culture system and the hMSCs-conditioned medium. However, animal study showed that hMSCs enhanced tumor formation and growth in vivo. Western blotting and immunoprecipitation data showed that the expressions of proliferating cell nuclear antigen (PCNA), Cyclin E, phospho-retinoblastoma protein (pRb), B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL, and matrix metalloproteinase 2 (MMP-2) were downregulated and the formation of Cyclin E-cyclin-dependent kinase 2 (CDK2) complexes was inhibited in the tumor cells treated with the hMSCs-conditioned medium. According to the observation of tumor mass and the result of microvessel density (MVD), we found that the promoting role of hMSCs on tumor growth was related with the increase of tumor vessel formation. Our present study suggests that hMSCs have a contradictory effect on tumor cell growth between in vitro and in vivo, and therefore, the exploitation of hMSCs in new therapeutic strategies should be cautious under the malignant conditions.  相似文献   

12.
Heregulin-beta1 (HRG) promotes motility, scattering, and invasiveness of breast cancer cells. Tiam1, a newly identified guanine nucleotide exchange factor, has been shown to inhibit or promote cell migration in a cell type-dependent manner. In this study, we identified Tiam1 as a target of HRG signaling. HRG stimulation of breast cancer epithelial cells induced the phosphorylation and redistribution of Tiam1 to the membrane ruffles and the loosening of intercellular junctions. In addition, HRG-mediated scattering of breast epithelial cells was accompanied by stimulation of tyrosine phosphorylation and redistribution of beta-catenin from the cell junctions to the cytosol and, finally, entry into the nucleus. Decompaction of breast cancer epithelial cells by HRG was accompanied by a transient physical association of the tyrosine-phosphorylated beta-catenin with the activated human epidermal growth factor receptor 2 and subsequent nuclear translocation of beta-catenin, as well as beta-catenin-dependent transactivation of T-cell factor.lymphoid enhancer factor-1. All of these HRG-induced phenotypic changes were regulated in a phosphatidylinositol-3 kinase-sensitive manner. HRG-induced cellular ruffles, loss of intercellular adhesiveness, and increased cell migration could be mimicked by overexpression of a fully functional Tiam1 construct. Furthermore, ectopic expression of Tiam1 or of an active beta-catenin mutant led to potentiation of the beta-catenin-dependent T-cell factor.lymphoid enhancer factor-1 transactivation and invasiveness of HRG-treated cells. We also found preliminary evidence suggesting a close correlation between the status of Tiam1 expression and invasiveness of human breast tumor cells with the degree of progression of breast tumors. Together, these findings suggest that HRG regulate Tiam1 activation and lymphoid enhancer factor/beta-catenin nuclear signaling via phosphatidylinositol-3 kinase in breast cancer cells.  相似文献   

13.
14.
Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat domain (ARD) of ankyrin is responsible for Tiam1 binding. Biochemical studies and deletion mutation analyses indicate that the 11-amino acid sequence between amino acids 717 and 727 of Tiam1 ((717)GEGTDAVKRS(727)L) is the ankyrin-binding domain. Most importantly, ankyrin binding to Tiam1 activates GDP/GTP exchange on Rho GTPases (e.g., Rac1).Using an Escherichia coli-derived calmodulin-binding peptide (CBP)-tagged recombinant Tiam1 (amino acids 393-728) fragment that contains the ankyrin-binding domain, we have detected a specific binding interaction between the Tiam1 (amino acids 393-738) fragment and ankyrin in vitro. This Tiam1 fragment also acts as a potent competitive inhibitor for Tiam1 binding to ankyrin. Transfection of SP-1 cell with Tiam1 cDNAs stimulates all of the following: (1) Tiam1-ankyrin association in the membrane projection; (2) Rac1 activation; and (3) breast tumor cell invasion and migration. Cotransfection of SP1 cells with green fluorescent protein (GFP)-tagged Tiam1 fragment cDNA and Tiam1 cDNA effectively blocks Tiam1-ankyrin colocalization in the cell membrane, and inhibits GDP/GTP exchange on Rac1 by ankyrin-associated Tiam1 and tumor-specific phenotypes. These findings suggest that ankyrin-Tiam1 interaction plays a pivotal role in regulating Rac1 signaling and cytoskeleton function required for oncogenic signaling and metastatic breast tumor cell progression.  相似文献   

15.
Dickkopf-1 (DKK-1) is known inhibitor of the canonical Wnt pathway. Recent studies strongly suggested that activation of DKK-1 expression results in inhibition of cell tumorigenicity. Reduced levels of DKK-1 in melanomas were recently shown. However, it is not known if DKK-1 activation in melanoma cells will inhibit cell tumorigenicity. In the present study, we overexpressed DKK-1 in melanoma cell line MDA-MB435. We show that while DKK-1 did not affect cell growth in soft agar, weak but significant inhibition of tumorigenicity in nude mice in vivo was observed. Analysis of resulting tumors revealed activation of cell death. In tumors originating from cells transduced with DKK-1, tumor mass was permeated with areas of necrosis. In tumors, originated from control cells, areas of necrosis were limited to the central region, a common feature of large tumors growing in nude mice. TUNEL assay revealed that in tumors originating from cells transduced with DKK-1 apoptotic cells were detected along the border of necrotic and viable areas of the tumors indicating significant increase in apoptotic process. Thus, our results indicate that activation of DKK-1 in melanoma cells leads to activation of apoptosis in vivo and, thus, is incompatible with tumor growth in nude mice.  相似文献   

16.
There is now considerable experimental evidence that aberrant activation of Rho family small GTPases promotes the uncontrolled proliferation, invasion, and metastatic properties of human cancer cells. Therefore, there is considerable interest in the development of small molecule inhibitors of Rho GTPase function. However, to date, most efforts have focused on inhibitors that indirectly block Rho GTPase function, by targeting either enzymes involved in post-translational processing or downstream protein kinase effectors. We recently determined that the EHT 1864 small molecule can inhibit Rac function in vivo. In this study, we evaluated the biological and biochemical specificities and biochemical mechanism of action of EHT 1864. We determined that EHT 1864 specifically inhibited Rac1-dependent platelet-derived growth factor-induced lamellipodia formation. Furthermore, our biochemical analyses with recombinant Rac proteins found that EHT 1864 possesses high affinity binding to Rac1, as well as the related Rac1b, Rac2, and Rac3 isoforms, and this association promoted the loss of bound nucleotide, inhibiting both guanine nucleotide association and Tiam1 Rac guanine nucleotide exchange factor-stimulated exchange factor activity in vitro. EHT 1864 therefore places Rac in an inert and inactive state, preventing its engagement with downstream effectors. Finally, we evaluated the ability of EHT 1864 to block Rac-dependent growth transformation, and we determined that EHT 1864 potently blocked transformation caused by constitutively activated Rac1, as well as Rac-dependent transformation caused by Tiam1 or Ras. Taken together, our results suggest that EHT 1864 selectively inhibits Rac downstream signaling and transformation by a novel mechanism involving guanine nucleotide displacement.  相似文献   

17.
Rho-like GTPases orchestrate distinct cytoskeletal changes in response to receptor stimulation. Invasion of T-lymphoma cells into a fibroblast monolayer is induced by Tiam1, an activator of the Rho-like GTPase Rac, and by constitutively active V12Rac1. Here we show that activated V12Cdc42 can also induce invasion of T-lymphoma cells. Activated RhoA potentiates invasion, but fails by itself to mimic Rac and Cdc42. However, invasion is inhibited by the Rho-inactivating C3 transferase. Thus, RhoA is required but not sufficient for invasion. Invasion of T-lymphoma cells is critically dependent on the presence of serum. Serum can be replaced by the serum-borne lipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) (10(-7)-10(-6) M), which act on distinct G protein-linked receptors to activate RhoA and phospholipase C (PLC)-Ca2+ signaling. LPA- and S1P-induced invasion is preceded by Rho-dependent F-actin redistribution and pseudopodia formation. However, expression of both V14RhoA and V12Rac1 does not bypass the LPA/S1P requirement for invasion, indicating involvement of an additional signaling pathway independent of RhoA. The PLC inhibitor U-73122, but not the inactive analog U-73343, abolishes invasion. Our results indicate that T-lymphoma invasion is driven by Tiam1/Rac or Cdc42 activation, and is dependent on LPA/S1P receptor-mediated RhoA and PLC signaling pathways which lead to pseudopod formation and enhanced infiltration.  相似文献   

18.
Tumor-stroma interactions play a significant role in tumor development and progression. Alterations in the stromal microenvironment, including enhanced vasculature (angiogenesis), modified extracellular matrix composition, inflammatory cells, and dys-balanced protease activity, are essential regulatory factors of tumor growth and invasion. Differential modulation of stromal characteristics is induced by epithelial skin tumor cells depending on their transformation stage when grown as surface transplants in vivo. Tumor cells can regulate the development of a "tumor-stroma" via the aberrant expression of growth factors or induction of growth factor receptors in the stromal compartment. In this context, secretion of the hematopoietic growth factors G-CSF and GM-CSF, constituitively expressed in enhanced malignant tumors, may be good candidates for induction of a tumor stroma through their effect on inflammatory cells. Upon its induction, the tumor stroma will reciprocally influence the differentiation status of tumor cells resulting in a normalization of benign tumor epithelia and the maintenance of a malignant phenotype, respectively. In the HaCaT model for squamous cell carcinoma of the skin, stromal activation and angiogenesis are transient in pre-malignant transplants, however they remain persistent in malignant transplants where progressive angiogenesis is closely correlated with tumor invasion. While continued expression of VEGF and PDGF are associated with benign tumor phenotypes, activation of VEGFR-2 is a hallmark of malignant tumors and accompanies ongoing angiogenesis and tumor invasion. As a consequence the inhibition of ongoing angiogenesis by blocking VEGFR-2 signalling resulted in dramatically impaired malignant tumor expansion and invasion. Comparably, tumor vascularization and invasion was blocked by disturbing the balance of matrix protease activity caused by a lack of PAI-1 in the stromal cells of the knockout mouse hosts. A similar inhibition of tumor vascularization was caused by TSP-1 over-expression in skin carcinoma cells, which also blocked tumor invasion and expansion. On the other hand, when granulation tissue and angiogenesis were only transiently activated as a result of stable transfection of PDGF into non-tumorigenic HaCaT cells, the target cells formed benign, but not malignant, tumors. Collectively, these data show that tumor vascularization, providing intimate association of blood vessels with tumor cells, is a prerequisite for tumor invasion. A potential mechanism for this interrelationship may be the differential regulation of MMP-expression in tumors of different grades of malignancy. In vitro MMP expression did not discriminate between benign and malignant tumor cells unless they were co-cultured with stromal fibroblasts. However, in vivo regulation of MMP expression was clearly dependent on tumor phenotype. While MMP-1 and MMP-13 were down-regulated in benign transplants, they were persistently up-regulated in malignant ones. A tight balance between proteases and their inhibitors is crucial for both the formation and infiltration of blood vessels and for tumor cell invasion, thus again emphasizing the importance of the stromal compartment for the development and progression of carcinomas.  相似文献   

19.
Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be over-expressed in many human tumors and knockdown of SATB1 can inhibit tumor growth. The present study was designed to determine the role of SATB1 in the growth of human glioma U251 cells using the plasmid-based SATB1 short hairpin RNA (shRNA) delivered by hydroxyapatite nanoparticles in vitro and in vivo. The in vitro growth, invasion and angiogenesis assays of human glioma U251 cells were done. U251 cells tumor blocks were transplanted into the nude mice. CaCl2-modified hydroxyapatite nanoparticles carrying shRNA-SATB1 plasmids were injected into the tumors. The apoptosis of the tumor U251 cells was examined with TUNEL assay and flow cytometer (FCM). The tumor growth and immunohistochemistry were measured. The expression level of SATB1 mRNA was investigated by RT-PCR. The expression levels of SATB1, Cyclin D1, MMP-2, VEGF, Bax and Caspase-9 protein were determined by western blot analysis. The results showed that hydroxyapatite nanoparticles-delivered shRNA-SATB1 could significantly inhibit the growth, invasion and angiogenesis of U251 cells in vitro and the growth of U251 cells in vivo. FCM results showed that Nano HAP-shRNA-SATB1-induced apoptosis (up to 67.8 %). SATB1 expression was strongly down-regulated in the tumor U251 cells. Cyclin D1, MMP-2 and VEGF were also down-regulated in the tumor tissues that also displayed significant increased in Bax expression and Caspase-9 activity. These results show that Nano HAP-shRNA-SATB1 can inhibit the growth of human glioma U251 cells in vitro and in vivo, and hydroxyapatite nanoparticles can be used for the in vitro and in vivo delivery of plasmid-based shRNAs into U251 cells.  相似文献   

20.
The full spectrum of developmental potential includes normal as well as abnormal and disease states. We therefore subscribe to the idea that tumors derive from the operation of paradevelopmental programs that yield consistent and recognizable morphologies. Work in frogs and mice shows that Hedgehog (Hh)-Gli signaling controls stem cell lineages and that its deregulation leads to tumor formation. Moreover, human tumor cells require sustained Hh-Gli signaling for proliferation as cyclopamine, an alkaloid of the lily Veratrum californicum that blocks the Hh pathway, inhibits the growth of different tumor cells in vitro as well as in subcutaneous xenografts. However, the evidence that systemic treatment is an effective anti-cancer therapy is missing. Here we have used Ptc1(+/-); p53(-/-) mice which develop medulloblastoma to test the ability of cyclopamine to inhibit endogenous tumor growth in vivo after tumor initiation through intraperitoneal delivery, which avoids the brain damage associated with direct injection. We find that systemic cyclopamine administration improves the health of Ptc1(+/-);p53(-/-) animals. Analyses of the cerebella of cyclopamine-treated animals show a severe reduction in tumor size and a large decrease in the number of Ptc1-expressing cells, as a readout of cells with an active Hu-Gli pathway, as well as an impairment of their proliferative capacity, always in comparison with vehicle treated mice. Our data demonstrate that systemic treatment with cyclopamine inhibits tumor growth in the brain supporting its therapeutical value for human HH-dependent tumors. They also demonstrate that even the complete loss of the well-known tumor suppressor p53 does not render the tumor independent of Hh pathway function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号