首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

2.
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.  相似文献   

3.
The distribution of galanin-like immunoreactivity in various regions of the central nervous system was assessed in three mammalian species, pig, rat, and human, by radioimmunoassay. Galanin concentrations were highest in the hypothalamus and pituitary region. In spinal cord, there was a rostrocaudal/dorsoventral gradient with highest levels observed in the sacral dorsal horn. Serial dilutions of porcine tissue extracts diluted parallel to the porcine standard curve, while the rat and human tissue extracts did not. In all tissues examined by high pressure liquid chromatography, the principal peak of immunoreactivity coeluted with the authentic porcine galanin standard and was decreased by trypsin cleavage. These results suggest a role for galanin in the central nervous system and support species differences in the structure of galanin.  相似文献   

4.
Summary. The influence of nitric oxide synthase (NOS) activity on the KCl-evoked amino acid concentrations was investigated by in vivo microdialysis in the striatum in a rat model of excitotoxic lesion. Basal microdialysate levels of amino acids decreased during the quinolinic acid-induced neurodegeneration process, except for glutamine that increased initially and returned to control values 30 days after quinolinic acid exposure. KCl-evoked increase of extracellular amino acid concentration was reduced due to NOS activity in the striatum of both controls and lesioned animals, except for 120 days after quinolinic acid injection. These changes of amino acid concentrations in microdialysates correlated with the known biochemistry of the consecutive domineered cell types during the lesion process as revealed by histochemistry for NOS, NADPH-diaphorase, GFAP and isolectin B4. The present data provide direct evidence that NOS activity can modulate extracellular amino acid concentrations in the striatum not only under physiological conditions, but also during a pharmacologically induced lesion process and, thus, suggests that nitric oxide affects neurodegeneration via this pathway. Received October 20, 1999; Accepted February 25, 2000  相似文献   

5.
加压素(AVP)和催产素(OT)是密切相关的2种肽,它们的基因均位于人类第20条染色体上。来自于神经垂体分泌的AVP和OT直接释放到循环系统,调节靶细胞的活动:来自于中枢轴突末梢释放AVP和OT遍布整个中枢神经系统,作为神经递质或调制调节神经细胞的活动,在特定脑区与记忆及精神上的疾病有关。研究AVP和OT在中枢神经系统中的作用,不仅有助于揭示精神分裂症、抑郁、酗酒、老年性痴呆、帕金森氏病等的致病机理,而且对揭示人类社会婚配制度的神经生物学机制提供参考资料。  相似文献   

6.
The mechanisms by which biotin enters and leaves brain, choroid plexus and cerebrospinal fluid (CSF) were investigated by injecting [3H]biotin either intravenously or intraventricularly into adult rabbits. [3H]biotin, either alone or together with unlabeled biotin was infused at a constant rate into conscious rabbits. At 180 minutes, [3H]biotin had entered CSF, choroid plexus, and brain. In brain, CSF, and plasma, greater than 90% of the nonvolatile3H was associated with [3H]biotin. The addition of 400 mol/kg unlabeled biotin to the infusion syringe decreased the penetration of [3H]biotin into brain and CSF by approximately 70 percent. Two hours after an intraventricular injection, [3H]biotin was cleared from the CSF more rapidly than mannitol and minimal metabolism of the [3H]biotin had occurred in brain. However, 18 hours after an intraventricular injection, approximately 35% of the [3H]biotin remaining in brain had been covalently incorporated into proteins, presumably into carboxylase apoenzymes. These results show that biotin enters CSF and brain by saturable transport systems that do not depend on metabolism of the biotin. However, [3H]biotin is very slowly incorporated covalently into proteins in brain in vivo.  相似文献   

7.
The distribution of neuropeptide K (NPK), a 36-residue amidated peptide originally isolated from porcine brain, is described in the rat CNS by immunohistochemical methods. Antibodies were generated in rabbits to N-terminus and C-terminus regions of the peptide and the distribution of immunoreactive cell bodies and fibers was mapped in colchicine-treated and normal rat brains. Major areas of cell body staining included the medial habenular nucleus, the ventromedial nucleus of the hypothalamus, the interpeduncular nucleus, the lateral dorsal tegmental nucleus, the nucleus raphe pallidus, and the nucleus of the solitary tract. Some of the areas of dense NPK-fiber immunoreactivity included the ventral pallidum, the caudate-putamen, certain areas of the hypothalamus, the central and medial amygdaloid nuclei, the entopeduncular nucleus, the habenular nuclei, the substantia nigra pars reticulata, the caudal part of the spinal nucleus of the trigeminal nerve, the nucleus of the solitary tract and the dorsal horn of the spinal cord. A striking similarity exists between this pattern of immunoreactive staining and that described for substance P, suggesting that the tachykinin systems do not exist independently in the brain. The possible roles for multiple tachykinins in the brain are discussed.  相似文献   

8.
Vasopressin was immunohistochemically localized at the electron microscopic (EM) level in the hypothalamic-neurohypophysial system (HNS) of three murids. Antiserum to vasopressin was produced in rabbits injected with lysine vasopressin (LVP) conjugated to egg albumin (EA), anti-EA being precipitated prior to staining. Sternberger's unlabeled antibody peroxidase technique was employed, immunoreactivity being designated by peroxidase anti-peroxidase (PAP) molecules and electron opacity. Immunoreactive neurosecretory granules (NSG) were found in the perikarya of the supraoptic nucleus (SON) in all three murids investigated, although far more profusely in the two wild strains. Immunoreactive axonal NSG were observed in the inner and outer zones of the median eminence (ME), and within most of the axons and terminals in the neurohypophysis. The concentration of primary serum effective for staining the SON (110–150) was far higher than that required for the ME and the neurohypophysis (1:500–1:1,200). AntiLVP also induced electron opacity of granules in cells of the pars intermedia (PI). Discussion centers on the significance of immunoreactive NSG in the neurosecretory (NS) perikarya, on the possibility of an extragranular pool of hormone, and on speculation about the electron opacity of the PI granules.  相似文献   

9.
Summary The cellular and subcellular localization of radioactivity in the brain of immature female rats was determined by dry-mount autoradiography 2 h after iv injection of 1.0 g of (monethyl-3H) diethylstilboestrol per 100 g body weight. A specific topographic pattern of nuclear concentration of the synthetic oestrogen was obtained similar to that for 3H-oestradiol-17 in specific neurons of the basal hypothalamus, preoptic region and amygdala. In competition experiments, the nuclear concentration of radioactivity in all areas studied was inhibited by unlabeled oestradiol, while unlabeled testosterone had no effect. These data suggest that although oestradiol can bind to androgen receptors, the oestrogen receptor itself can account for the localization seen after the injection of 3H-oestradiol.This research was supported in part by US PHS Grant No. NS12933NIH Career Development Awardee No. NS00164The expert technical assistance of Ms. Riki Ison and Ms. Linda Furr is gratefully acknowledged.  相似文献   

10.
The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.  相似文献   

11.
David G. Nicholls 《BBA》2009,1787(11):1416-41170
The ability of isolated brain mitochondria to accumulate, store and release calcium has been extensively characterized. Extrapolation to the intact neuron led to predictions that the in situ mitochondria would reversibly accumulate Ca2+ when the concentration of the cation in the vicinity of the mitochondria rose above the ‘set-point’ at which uptake and efflux were in balance, storing Ca2+ as a complex with phosphate, and slowly releasing the cation when plasma membrane ion pumps lowered the cytoplasmic free Ca2+. Excessive accumulation of the cation was predicted to lead to activation of the permeability transition, with catastrophic consequences for the neuron. Each of these predictions has been confirmed with intact neurons, and there is convincing evidence for the permeability transition in cellular Ca2+ overload associated with glutamate excitotoxicity and stroke, while the neurodegenerative disease in which possible defects in mitochondrial Ca2+ handling have been most intensively investigated is Huntington's Disease. In this brief review evidence that mitochondrial Ca2+ transport is relevant to neuronal survival in these conditions will be discussed.  相似文献   

12.
Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of 125I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. 125I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions.  相似文献   

13.

Background

The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellular response to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronal damage and glial reaction induced by a hypoxic–ischemic episode is highly related to glutamate excitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia–ischemia in the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death, however, no comprehensive study on the localization of the redox proteins in the rat CNS was available.

Methods

The aim of this work was to study the distribution of the following proteins of the thioredoxin and glutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2, Txnip, Grx1, Grx2, Grx3, Grx5, and γ-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We have focused on areas most sensitive to a hypoxia–ischemic insult: Cerebellum, striatum, hippocampus, spinal cord, substantia nigra, cortex and retina.

Results and conclusions

Previous studies implied that these redox proteins may be distributed in most cell types and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family.

General significance

We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia–ischemia insults and other disorders of the CNS.This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.  相似文献   

14.
Summary The localization and distribution of prolactinlike-immunoreactive perikarya and nerve fibers in the rat central nervous system have been studied by a preembedding immunoperoxidase method using well-characterized specific immunsera to rat prolactin. Although the localization of labeled neuronal structures in a number of brain areas correlates with the data of previous immunocytochemical studies, we found prolactin-immunoreactive neurons in various regions not previously reported. In untreated animals, the highest concentrations of prolactinfibers were observed: (i) in the external layers of the median eminence where they exhibited close contact with blood vessels, and (ii) in the bed nucleus of the stria terminalis and in the central nucleus of the amygdala where they closely surrounded unlabeled perikarya. Dense networks of finely varicose prolactin fibers were also observed in the organum vasculosum of the lamina terminalis, in the subfornical organ, and in the dorsolateral regions of the medulla oblongata and the spinal cord. Lastly, a number of large, varicose, intensely immunoreactive fibers were found in the olfactory bulb, the cingulum, and the periventricular regions of the hypothalamus and central gray, whereas isolated fibers could be detected in the caudate nucleus and in the cerebral cortex. In animals treated with colchicine, prolactin-immunoreactive perikarya were essentially located within the periventricular and perifornical regions of the hypothalamus, and within the bed nucleus of the stria terminalis. Although corticotropin (ACTH 17-39)-immunoreactive fibers could be detected in several regions found to contain prolactin fibers, the distribution and organization of both fiber types clearly differed in numerous brain regions, and the regions containing the corresponding perikarya did not overlap. The ultrastructural organization of the prolactin-immunoreactive fibers revealed by electronmicroscopic immunocytochernistry in various brain regions, allowed the characterization of two main types of prolactinergic neurons including: (i) endocrine neurons, whose axons terminated in close vicinity to portal blood vessels in the external median eminence, and (ii) neurons projecting to extrahypothalamic regions, whose axons formed typical synaptic connections with unidentified neuronal units.  相似文献   

15.
Gray AC  Coupar IM  White PJ 《Life sciences》2006,79(7):674-685
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.  相似文献   

16.
Intrathecal synthesis of human T-lymphotropic virus type 1 (HTLV-1) antibodies (Abs) represents conclusive evidence of a specific immune response in the central nervous system of HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Western blotting (WB) for HTLV Abs in serum is a confirmatory test for HTLV-1 infection. The aim of this study was to standardise the Western blot to demonstrate the intrathecal pattern of Abs against HTLV-1 proteins in HAM/TSP patients. Paired cerebrospinal fluid (CSF) and serum samples were selected from 20 patients with definite HAM/TSP, 19 HTLV-1 seronegative patients and two HTLV-1 patients without definite HAM/TSP. The presence of reactive bands of greater intensity in the CSF compared to serum (or bands in only the CSF) indicated the intrathecal synthesis of anti-HTLV-1 Abs. All definite HAM/TSP patients presented with an intrathecal synthesis of anti-HTLV-1 Abs; these Abs were not detected in the control patients. The most frequent intrathecal targets of anti-HTLV-1 Abs were GD21, rgp46-I and p24 and, to a lesser extent, p19, p26, p28, p32, p36, p53 gp21 and gp46. The intrathecal immune response against env (GD21 and rgp46-I) and gag (p24) proteins represents the most important humoral pattern in HAM/TSP. This response may be used as a diagnostic marker, considering the frequent association of intrathecal anti-HTLV-1 Ab synthesis with HAM/TSP and the pathogenesis of this neurological disease.  相似文献   

17.

Background

Iodothyronines are charged amino acid derivatives that cannot passively cross a phospholipid bilayer. Transport of thyroid hormones across plasma membranes is mediated by integral membrane proteins belonging to several gene families. These transporters therefore allow or limit access of thyroid hormones into brain. Since thyroid hormones are essential for brain development and cell differentiation, it is expected that genetic deficiency of such transporters would result in neurodevelopmental derangements.

Scope of review

We introduce concepts of thyroid hormone transport into the brain and into brain cells. Important thyroid hormone transmembrane transporters are presented along with their expression patterns in different brain cell types. A focus is placed on monocarboxylate transporter 8 (MCT8) which has been identified as an essential thyroid hormone transporter in humans. Mutations in MCT8 underlie one of the first described X-linked mental retardation syndromes, the Allan–Herndon–Dudley syndrome.

Major conclusions

Thyroid hormone transporter molecules are expressed in a developmental and cell type-specific pattern. Any thyroid hormone molecule has to cross consecutively the luminal and abluminal membranes of the capillary endothelium, enter astrocytic foot processes, and leave the astrocyte through the plasma membrane to finally cross another plasma membrane on its way towards its target nucleus.

General significance

We can expect more transporters being involved in or contributing to in neurodevelopmental or neuropsychiatric disease. Due to their expression in cellular components regulating the hypothalamus–pituitary–thyroid axis, mutations and polymorphisms are expected to impact on negative feedback regulation and hormonal setpoints. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

18.
Summary Complete neurones were impregnated in the brain of the pulmonate gastropod pond snail, Lymnaea stagnalis L. using the Golgi-Cox method. Mapping of small to medium sized neurones identified in living preparations by the position of the perikarya was possible. Simple monopolar and bifurcating monopolar neurones with varying lateral patterns of short fine fibres were common in the pond snail brain. Larger neurones have more complex and numerous branches originating from axons close to the perikarya than smaller ones. Stem processes originating on the cell body were observed on neurones above 30 in somal diameter. Possible sites for the location of chemical synapses were suggested. Functional types of neurones were difficult to separate on morphological grounds. Giant or very large neurones are small in number in pond snail ganglia, compared with medium or small neurones.The authors wish to thank Mr. Colin Atherton for photographic assistance and the U.K. Science Research Council for a grant to P. R. B.  相似文献   

19.
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells. This work was supported by the German Federal Ministry of Education and Research (BMBF no. 01GA0510 and no. 0312134) and by the Bavarian State Ministry of Sciences, Research and the Arts, "Forneurocell grant".  相似文献   

20.
Synopsis Histological studies have demonstrated a significantly richer vascularization of the brain and anterior spinal cord tissues in the mud-burrowing gobies Brachyamblyopus sp. and Trypauchen sp. than three fish species that occupy a variety of non-burrowing habitats. Physico-chemical data from the mud-burrowing gobies' habitat indicate anoxic conditions in the substrate. It is suggested that the enhanced development and distribution of blood capillaries throughout the central nervous system of these two goby species may be a morphological adaptation to their environment. Appropriate physiological studies are needed to clarify this contention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号