首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antitumor antibiotic drug mitomycin reacts with DNA via ring opening of one of its active sites, the aziridine ring. Since the opening of aziridine rings is facilitated by the addition of a positively charged atom to the nitrogen, the possibility of the addition of a lithium ion to a mitomycin analog is investigated withab initio Hartree-Fock calculations. The lithium-ion affinity of the mitomycin aziridine nitrogen atom is found to be 42 kcal/mol, after correcting for the superposition error.  相似文献   

2.
Hartree-Fock and density functional theory (B3LYP) calculations were applied to the study of the anti-tumor drug FR900482 and some of its analogs. Optimum geometries were obtained and it was found that the most stable conformations feature the N-H bond of the aziridine ring nitrogen “down” and the oxygen bridge and aziridine nitrogen “up”. It was also found that the analog containing NH2 (in place of the -CHO of the natural product) is the most prone to oxidation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. It seems that a simple name for FR900482 has not been adopted so far because there is still a search for the most stable analog.  相似文献   

3.
Aziridines have been shown to possess marked immunotropic activity. The aim of this work was to study the in vitro effects of different concentrations of three novel aziridines, 2-hydroxy-methyl-1-(N-phtaloylglycyl) aziridine (aziridine 1), 2-hydroxy-methyl-1-(N-phtaloylalanyl) aziridine (aziridine 2) and 2-hydroxy-methyl-1-(N-phtaloylphenylalanyl) aziridine (aziridine 3), on the proliferative responses of human lymphocytes stimulated by mitogens (concanavalin A (Con A) and lipopolysaccharide (LPS)), and interleukin-2 (IL-2), interleukin-6 (IL-6) secretion. The results showed that aziridines 1 and 3 significantly stimulated the resting and Con A or LPS lymphocyte proliferation at concentrations between 1 micromol/l and 1 mmol/l, in a dose-dependent manner, the action of aziridine 3 being the highest. They also increased IL-2 and IL-6 secretion. However, aziridine 2 had no effect on the resting lymphocyte proliferation in the absence of mitogens, at any concentration used, reduced Con A-stimulated T lymphocyte proliferation and LPS- stimulated B lymphocyte proliferation in a dose dependent manner and diminished IL-2 and IL-6 production. None of the three aziridines affected cell viability. In conclusion, the three aziridines used in this study displayed immunomodulatory properties. Aziridines 1 and 3 are potentially immunostimulant while aziridine 2 is immunosuppressive and could be used to provide nonspecific cell-mediated immune responses.  相似文献   

4.
The radical cations of 1-butyl-trans-2,3-diphenyl aziridine (1), 1-butyl-2-phenyl aziridine (2), 1,2-diphenyl aziridine (3) and 1-(p-methoxyphenyl)-2-phenyl aziridine (4) were generated upon laser flash photolysis in aqueous and aqueous acetonitrile solutions by direct photoionisation as indicated by the broad absorption band of the solvated electron above 550 nm as well.  相似文献   

5.
Rotstein BH  Rai V  Hili R  Yudin AK 《Nature protocols》2010,5(11):1813-1822
This protocol describes a method for synthesizing peptide macrocycles from linear peptide precursors, isocyanides and aziridine aldehydes. The effects of the reaction components on the efficiency of the process are discussed. Macrocyclization is exemplified by the preparation of a nine-membered ring peptide macrocycle. The product is further functionalized by nucleophilic opening of the aziridine ring with a fluorescent thiol. This transformation constitutes a useful late-stage functionalization of a macrocyclic peptide molecule. The experimental section describes the selection of the required starting materials, and the preparation of a representative aziridine-2-carboxaldehyde dimer. The synthesis and isolation of the peptide macrocycle can be accomplished in 6 h, and the ring-opening requires approximately 6-8 h. The aziridine-2-carboxaldehyde reagent is commercially available or can be synthesized from readily available starting materials in approximately 4 d. The strategy described is not limited to the specific peptide, isocyanide, aziridine aldehyde or nucleophile used in the representative synthesis.  相似文献   

6.
A series of molecular orbital calculations, using MINDO/3 and CNDO/2L methods, have been used to characterize the chemical reaction of protonated aziridine with DNA nucleophilic base sites. The N-7 atom of guanine is found to be the preferred alkylation site only when the O-6 atom of guanine is involved in base-pair hydrogen bonding. Otherwise O-6 is the predicted major site of alkylation. This indirectly suggests that protonated aziridine alkylation processes involve base-paired DNA structures, since N-7 guanine is the observed major site of alkylation. Alkylation of N-3 adenine is predicted to be more favorable than chemical attack of the N-7 adenine position. Both of these sites, however, are predicted to be less reactive than N-7 of guanine. These chemical reactivity studies resolve alkylation specifically not achieved in the DNA–alkylator physical association calculations reported in the preceding paper.  相似文献   

7.
We have observed that ATP induces a second type of oestradiol binding site with slightly lower affinity (Ka 3.3 x 10(8) M-1) and lower sedimentation coefficient (4 S) in cytosol from immature lamb uterus and MCF-7 cells. A factor isolated from immature lamb uterine nuclear extract was found to decrease the steroid binding activity of oestradiol receptor that had been purified by heparin Sepharose and oestradiol-Sepharose chromatography. Inhibition of this factor by known phosphatase inhibitors, indicated that this factor may be a phosphatase. Another factor isolated from immature lamb uterine cytosol was found to enhance the effect of ATP on receptor binding in cytosol from immature lamb uterus and MCF-7 cells. The ability of this factor to phosphorylate a partially purified cytosol receptor from immature lamb uterus when incubated with [gamma 32P]ATP, indicates that this factor is a phosphokinase. The phosphorylated products after labeling with [3H]tamoxifen aziridine were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Three phosphorylated proteins with molecular weights 150, 97, and 67 kDa bound [3H]tamoxifen aziridine. Ammonium sulphate precipitated cytosol oestradiol receptor from immature lamb uterus was inactivated with receptor inactivating factor and then reactivated with receptor activating factor in the presence of [gamma 32P]ATP and substantially affinity labelled with [3H]tamoxifen aziridine. The affinity labelled oestradiol receptor was immunopurified with the monoclonal antibody JS 34/32. Three proteins with molecular weights 67, 50 and 43 kDa specifically bound [3H]tamoxifen aziridine and only 43 kDa receptor fragment was phosphorylated. The relevance of inactivation/reactivation of oestradiol receptor to the dephosphorylation/phosphorylation of receptor is discussed.  相似文献   

8.
Aziridine (ethyleneimine) reacts with DNA in vitro, mainly at the N7 position of guanine and N3 of adenine, then imidazole ring opening of the modified guanine results in formation of formamidopyrimidine (FaPy) residues. The Escherichia coli fpg gene encodes a DNA glycosylase that removes FaPy residues from DNA. To determine whether aziridine produces FaPy lesions in mammalian cells we have expressed the E.coli fpg gene in CHO cells. The transfected cells, expressing high levels of the bacterial protein, are more resistant to the toxic and mutagenic effects of aziridine than the control population. Less DNA damage was measured by quantitative PCR analysis in transfected than in control cells treated with equimolar concentrations of aziridine. The results suggest that aziridine produces in vivo FaPy residues that could account for the deleterious effects of this compound.  相似文献   

9.
Whereas sitosterol and 24(28)-methylene cycloartanol were competitive inhibitors (with Ki = 26 microM and 14 microM, respectively), 24(R,S)-25-epiminolanosterol was found to be a potent non-competitive inhibitor (Ki = 3.0 nM) of the S-adenosyl-L-methionine-C-24 methyl transferase from sunflower embryos. Because the ground state analog, 24(R,S)-oxidolanosterol, failed to inhibit the catalysis and 25-azalanosterol inhibited the catalysis with a Ki of 30 nM we conclude that the aziridine functions in a manner similar to the azasteriod (Rahier, A., et al., J. Biol. Chem. (1984) 259, 15215) as a transition state analog mimicking the carbonium intermediate found in the normal transmethylation reaction. Additionally, we observed that the aziridine inhibited cycloartenol metabolism (the preferred substrate for transmethylation) in cultured sunflower cells and cell growth.  相似文献   

10.
The enzymatically generated free radical of the antitumor agent diaziquone is analyzed with the help of two analogs where either the aziridine rings (RQ14) or the carboethoxyamino groups (RQ2) were substituted by chlorine atoms. The hyperfine couplings observed in the diaziquone free radical are due to the nitrogens in the aziridine group. Unresolved coupling and hindered rotation contribute to line broadening. We find that diaziquone free radicals are more stable than RQ14 but less stable than RQ2 free radicals. The reason for this is that the carboethoxyamino groups make the aromatic ring unstable, while the aziridines contribute to its stability. The free radical observed in diaziquone is in all probability that of the parent compound and not that of an intermediate metabolite.  相似文献   

11.
The enzymatically generated free radical of the antitumor agent diaziquone is analyzed with the help of two analogs where either the aziridine rings (RQ14) or the carboethoxyamino groups (RQ2) were substituted by chlorine atoms. The hyperfine couplings observed in the diaziquone free radical are due to the nitrogens in the aziridine group. Unresolved coupling and hindered rotation contribute to line broadening. We find that diaziquone free radicals are more stable than RQ14 but less stable than RQ2 free radicals. The reason for this is that the carboethoxyamino groups make the aromatic ring unstable, while the aziridines contribute to its stability. The free radical observed in diaziquone is in all probability that of the parent compound and not that of an intermediate metabolite.  相似文献   

12.
Here, we demonstrate a conjugation strategy whereby cyclic RGD-containing macrocycles are prepared using aziridine aldehydes, isocyanides, and linear peptides, followed by conjugation to a cysteamine linker. Our method involves site-selective aziridine ring-opening with the nucleophilic sulfhydryl group of cysteamine. Fluorescein was then efficiently conjugated to the primary amine of cysteamine by NHS-chemistry. This strategy may be expanded to provide easy access to a wide variety of fluorescent dyes or radiometal chelators. Modeling studies showed that aziridine aldehyde cyclization chemistry stabilized the RGD motif into the required bioactive conformation and that this cyclization chemistry modulated the geometry of macrocycles of different residue lengths. In vitro studies showed that cPRGDA and cPRGDAA both selectively bound to α(V)β(3)-overexpressing U87 glioblastoma cells, and that cPRGDA had a better binding affinity compared to cPRGDAA. The improved binding affinity of cPRGDA was attributed to the fixed Pro-C(α)-Asp-C(α) distance surrounding the stabilized RGD motif in cPRGDA.  相似文献   

13.
The crystal structures of a complete series of configurational isomers of 2,3-epimino and 3,4-epimino derivatives of 1,6-anhydro-β-d-hexopyranoses were determined by single-crystal X-ray analysis. The structures exhibited conformational rigidity within the series regardless of the position and orientation of the aziridine ring. Possible formation of intramolecular hydrogen bonds involving the NH group is discussed with respect to the results of IR spectroscopy and to the intermolecular hydrogen bonds found in the crystal packing.  相似文献   

14.
To clarify the relationship of aziridine biotransformation to their cytotoxic activities, the metabolism of optical isomers of typical cytotoxic and non-cytotoxic aziridines was studied in isolated hepatocytes, rat liver microsomes, mitochondria and L-1210 mouse leukemia cells. Cytotoxic 1-methyl-2-beta-naphthylaziridine (NAZ) gave nitrosomethane as one of the bioactivation products in isolated hepatocytes and simultaneously induced a marked decrease in cellular ATP followed by cell lethality. NAZ itself did not directly affect the respiratory function of mitochondria in isolated hepatocytes or in buffer solution, however, it inhibited the mitochondrial activity in the presence of microsomes in the buffer solution. Nitroso-t-butane or nitrosomethane dimer, used as a substitute for extremely labile nitrosomethane, strongly inhibited the respiration of mitochondria. On the other hand, optical isomers of 2-aziridinecarboxylic acid (AZC) which did not give nitrosomethane in isolated hepatocytes or microsomes also did not show cytotoxicity. Thus, the cytotoxicity of NAZ seems to be induced by bioactivation via cellular oxidases with the nitrosomethane generated being a major toxic component. This may occur with most of the cytotoxic aziridine derivatives.  相似文献   

15.
Density functional theory (DFT) using the B3LYP functional was applied to elucidate the molecular properties of the antitumor drug thiotepa and its main metabolite tepa. Aqueous solvent effects were introduced using the conductor-like polarizable continuum model (CPCM). The protocol for calculating the pK a values obtained with different cavity models was tested on a series of aziridine and phosphoramide compounds. An efficient computational scheme has been identified that uses the CPCM model of solvation with a universal force field (UFF) cavity. The method has been used to evaluate the basicities of thiotepa and its metabolite. Our calculations show that the basicities of the aziridine moiety of thiotepa and tepa are dramatically reduced compared to free aziridine, indicating that highly acidic media are needed to produce substantial yields of the N-protonated form of the drug. Finally, the mechanisms of reaction of the drug and its metabolite are discussed based on our theoretical results. The calculations reproduce the experimental trends very satisfactorily.  相似文献   

16.
《Chirality》2017,29(5):213-220
Optically pure, diastereomeric aziridine amides built on the chiral skeletons of camphor, fenchone, and menthone have proven to be highly efficient ligands for enantioselective asymmetric direct aldol reaction in the presence of water and zinc triflate. Desired products were formed in moderate to high chemical yields (up to 95%) and with enantiomeric excess up to 99%. The influence of the stereogenic centers located at the aziridine subunit on the stereochemical course of the reaction is discussed.  相似文献   

17.
18.
The one-electron electrochemical reduction of diaziquone (AZQ) and 12 analogs is analyzed using ESR spectroscopy and cyclic voltammetry. The hyperfine coupling constants arising from the interaction of the unpaired electron with the aziridine nitrogen nuclei fall within 1.20 and 2.26 G. Smaller couplings are observed arising from the protons and nitrogens in the carboethoxyamino groups. The in vitro activity of AZQ and its analogs is examined. Methyl groups in the aziridine rings increase the activity of some analogs. In the absence of aziridines, a chloroquinone compound with only carboethoxyamino groups was surprisingly active. This compound has a more positive cathodic peak than diaziquone.  相似文献   

19.
Zang H  Gates KS 《Biochemistry》2000,39(48):14968-14975
Azinomycin B (also known as carzinophilin A) contains two electrophilic functional groups-an epoxide and an aziridine residue-that react with nucleophilic sites in duplex DNA to form cross-links at 5'-dGNT and 5'-dGNC sequences. Although the aziridine residue of azinomycin is undoubtedly required for cross-link formation, analogues containing an intact epoxide group but no aziridine residue retain significant biological activity. Azinomycin epoxide analogues (e.g., 5 and 6) are of interest due to their potent biological activity and because there is evidence that azinomycin may decompose in vivo to yield such compounds. To investigate the chemical events underlying the toxicity of azinomycin epoxides, DNA binding and alkylation by synthetic analogues of azinomycin B (6, 8, and 9) that comprise the naphthalene-containing "left half" of the antibiotic have been investigated. The epoxide-containing analogue of azinomycin (6) efficiently alkylates guanosine residues in duplex DNA. DNA alkylation by 6 is facilitated by noncovalent binding of the compound to the double helix. The results of UV-vis absorbance, fluorescence spectroscopy, DNA winding, viscometry, and equilibrium dialysis experiments indicate that the naphthalene group of azinomycin binds to DNA via intercalation. Equilibrium dialysis experiments provide an estimated binding constant of (1.3 +/- 0.3) x 10(3) M(-)(1) for the association of a nonalkylating azinomycin analogue (9) with duplex DNA. The DNA-binding and alkylating properties of the azinomycin epoxide 6 provide a basis for understanding the cytotoxicity of azinomycin analogues which contain an epoxide residue but no aziridine group and may provide insight into the mechanisms by which azinomycin forms interstrand DNA cross-links.  相似文献   

20.
24,28-Iminofucosterol (I) has been synthesized from fucosterol acetate via addition of iodine isocyanate. The steroidal aziridine (I) disrupted normal growth and development of larvae of the silkworm, Bombyx mori and was found to be a potent inhibitor of dealkylation of β-sitosterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号