首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian and Escherichia coli succinate dehydrogenase (SDH) and E. coli fumarate reductase apparently contain an essential cysteine residue at the active site, as shown by substrate-protectable inactivation with thiol-specific reagents. Bacillus subtilis SDH was found to be resistant to this type of reagent and contains an alanine residue at the amino acid position equivalent to the only invariant cysteine in the flavoprotein subunit of E. coli succinate oxidoreductases. Substitution of this alanine, at position 252 in the flavoprotein subunit of B. subtilis SDH, by cysteine resulted in an enzyme sensitive to thiol-specific reagents and protectable by substrate. Other biochemical properties of the redesigned SDH were similar to those of the wild-type enzyme. It is concluded that the invariant cysteine in the flavoprotein of E. coli succinate oxidoreductases corresponds to the active site thiol. However, this cysteine is most likely not essential for succinate oxidation and seemingly lacks an assignable specific function. An invariant arginine in juxtaposition to Ala-252 in the flavoprotein of B. subtilis SDH, and to the invariant cysteine in the E. coli homologous enzymes, is probably essential for substrate binding.  相似文献   

2.
BACKGROUND: Given the vital role of NAD+ in cell metabolism, the enzymes involved in bacterial de novo NAD+ biosynthesis are possible targets for drug design against pathogenic bacteria. The first reaction in the pathway is catalysed by L-aspartate oxidase (LASPO), a flavoenzyme that converts aspartate to iminoaspartate using either molecular oxygen or fumarate as electron acceptors. LASPO has considerable sequence homology with the flavoprotein subunits of succinate dehydrogenase (SDH) and fumarate reductase (FRD). RESULTS: The crystal structure of the apoform of LASPO from Escherichia coli has been determined to 2.2 A resolution. The enzyme shows a novel fold for an FAD-dependent protein, comprising a three-domain structure: an FAD-binding domain with the dinucleotide-binding fold, a C-terminal three-helical bundle domain, and an alpha + beta capping domain, which is topologically similar to the small subunit of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase. The interface between the FAD-binding and capping domains defines a cleft in which the active site is located. CONCLUSIONS: A number of strictly conserved residues present in all three domains indicate that LASPO, SDH and FRD share the same overall folding topology. Many of these conserved residues are in the FAD-binding site and active centre, suggesting a similar catalytic mechanism. Thus, LASPO, SDH and FRD form a class of functionally and structurally related oxidoreductases that are all able to reduce fumarate and to oxidise a dicarboxylate substrate.  相似文献   

3.
Activities of succinate oxidase, fumarate reductase (FR) and succinate dehydrogenase (SDH) under a set of defined conditions were determined in the mitochondrial isolate from Setaria digitata, the filarial parasite from the cattle Bos indicus. Presence of only two activities namely SDH and succinate--UQ reductase of the succinate oxidase system could be detected in S. digitata. In the absence of cytochromes, the 3rd enzyme of the complex namely cytochrome oxidase is absent and it is proposed that an alternative oxidase is responsible for completing the succinate oxidation expressed as succinate oxidase activity. Though SDH and FR catalyse reverse reactions, they responded differently to modulators such as oxaloacetate, aspartate, alanine, pyruvate and fumarate. The degree of response of the two activities against inhibitors of electron transport was also different. Interestingly fumarate caused only 50% inhibition of succinate oxidation, while the effect against FR was more convincing.  相似文献   

4.
Succinate dehydrogenases and fumarate reductases are complex mitochondrial or bacterial respiratory chain proteins with remarkably similar structures and functions. Succinate dehydrogenase oxidizes succinate and reduces ubiquinone using a flavin adenine dinucleotide cofactor and iron-sulfur clusters to transport electrons. A model of the quaternary structure of the tetrameric Saccharomyces cerevisiae succinate dehydrogenase was constructed based on the crystal structures of the Escherichia coli succinate dehydrogenase, the E. coli fumarate reductase, and the Wolinella succinogenes fumarate reductase. One FAD and three iron-sulfur clusters were docked into the Sdh1p and Sdh2p catalytic dimer. One b-type heme and two ubiquinone or inhibitor analog molecules were docked into the Sdh3p and Sdh4p membrane dimer. The model is consistent with numerous experimental observations. The calculated free energies of inhibitor binding are in excellent agreement with the experimentally determined inhibitory constants. Functionally important residues identified by mutagenesis of the SDH3 and SDH4 genes are located near the two proposed quinone-binding sites, which are separated by the heme. The proximal quinone-binding site, located nearest the catalytic dimer, has a considerably more polar environment than the distal site. Alternative low energy conformations of the membrane subunits were explored in a molecular dynamics simulation of the dimer embedded in a phospholipid bilayer. The simulation offers insight into why Sdh4p Cys-78 may be serving as the second axial ligand for the heme instead of a histidine residue. We discuss the possible roles of heme and of the two quinone-binding sites in electron transport.  相似文献   

5.
Protein film voltammetry is used to probe the energetics of electron transfer and substrate binding at the active site of a respiratory flavoenzyme--the membrane-extrinsic catalytic domain of Escherichia coli fumarate reductase (FrdAB). The activity as a function of the electrochemical driving force is revealed in catalytic voltammograms, the shapes of which are interpreted using a Michaelis-Menten model that incorporates the potential dimension. Voltammetric experiments carried out at room temperature under turnover conditions reveal the reduction potentials of the FAD, the stability of the semiquinone, relevant protonation states, and pH-dependent succinate--enzyme binding constants for all three redox states of the FAD. Fast-scan experiments in the presence of substrate confirm the value of the two-electron reduction potential of the FAD and show that product release is not rate limiting. The sequence of binding and protonation events over the whole catalytic cycle is deduced. Importantly, comparisons are made with the electrocatalytic properties of SDH, the membrane-extrinsic catalytic domain of mitochondrial complex II.  相似文献   

6.
Purified and membrane-bound succinate dehydrogenase (SDH) from bovine heart mitochondria was inhibited by the histidine-modifying reagents ethoxyformic anhydride (EFA) and Rose Bengal in the presence of light. Succinate and competitive inhibitors protected against inhibition, and decreased the number of histidyl residues modified by EFA. The essential residue modified by EFA was not the essential thiol of SDH, but modification of the essential thiol abolished the protective effect of malonate against inhibition of SDH by EFA. The EFA inhibition was reversed by hydroxylamine nearly completely when the inhibition was less than or equal to 35%, and only partially when the inhibition was more extensive. The uv spectrum of EFA-modified SDH before and after hydroxylamine treatment suggested that extensive inhibition of SDH with EFA may result in ethoxyformylation at both imidazole nitrogens of histidyl residues. Such a modification is not reversed by hydroxylamine. Succinate dehydrogenases and fumarate reductases from several different sources have similar compositions, and the two enzymes from Escherichia coli have considerable homology in the amino acid composition of their respective flavoprotein and iron-sulfur protein subunits. In the former, there is a short stretch containing conserved histidine, cysteine, and arginine residues. These residues, if also conserved in the bovine enzyme, may be the essential active site residues suggested by this work (histidine) and previously (cysteine, arginine).  相似文献   

7.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The catalytic domain of fumarate reductase consists of the FrdA subunit, which contains the active site, and a FAD prosthetic group covalently attached to His44, plus the FrdB subunit which contains at least two of the three nonidentical iron-sulfur clusters of the enzyme. To examine the role of covalently bound FAD in enzyme activity and electron transfer during anaerobic cell growth, site-directed mutagenesis was used to alter His44 of the FrdA subunit to a Ser, Cys, or Tyr residue. The resulting mutant enzyme complexes that were synthesized associated normally with the cytoplasmic membrane, but had decreased ability (greater than 70%) to reduce fumarate with reduced benzyl viologen, an artificial electron donor of low redox potential (Em = -359 mV; Clark, W. M. (1972) Oxidation-Reduction Potentials of Organic Systems, Robert E. Kreiger Publishing Co., Melbourne, FL). Even lower activities were measured when the higher potential, natural electron donor menaquinol was used, which, however, correlated with the slower growth rates of the different mutant complexes. In contrast to the normal enzyme, the mutant enzyme complexes were unable to oxidize succinate. Substitution of Arg for His44 produced a totally inactive enzyme complex that permitted no cell growth on nonfermentable substrates with fumarate as electron acceptor. All four mutant complexes contained noncovalently bound FAD in stoichiometric amounts. These data indicate a unique role of the 8 alpha-[N(3)-histidyl] FAD linkage in enzyme activity, by raising the redox potential of free FAD to permit reduction by both menaquinol and succinate.  相似文献   

8.
The mitochondrial succinate dehydrogenase (SDH) is an essential component of the electron transport chain and of the tricarboxylic acid cycle. Also known as complex II, this tetrameric enzyme catalyzes the oxidation of succinate to fumarate and reduces ubiquinone. Mutations in the human SDHB, SDHC, and SDHD genes are tumorigenic, leading to the development of several types of tumors, including paraganglioma and pheochromocytoma. The mechanisms linking SDH mutations to oncogenesis are still unclear. In this work, we used the yeast SDH to investigate the molecular and catalytic effects of tumorigenic or related mutations. We mutated Arg(47) of the Sdh3p subunit to Cys, Glu, and Lys and Asp(88) of the Sdh4p subunit to Asn, Glu, and Lys. Both Arg(47) and Asp(88) are conserved residues, and Arg(47) is a known site of cancer causing mutations in humans. All of the mutants examined have reduced ubiquinone reductase activities. The SDH3 R47K, SDH4 D88E, and SDH4 D88N mutants are sensitive to hyperoxia and paraquat and have elevated rates of superoxide production in vitro and in vivo.We also observed the accumulation and secretion of succinate. Succinate can inhibit prolyl hydroxylase enzymes, which initiate a proliferative response through the activation of hypoxia-inducible factor 1alpha. We suggest that SDH mutations can promote tumor formation by contributing to both reactive oxygen species production and to a proliferative response normally induced by hypoxia via the accumulation of succinate.  相似文献   

9.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The enzyme is structurally and catalytically similar to succinate dehydrogenase (succinate-ubiquinone oxidoreductase) from both procaryotes and eucaryotes. Both enzymes have been proposed to contain an essential cysteine residue at the active site based on studies with thiol-specific reagents. Chemical modification studies have also suggested roles for essential histidine and arginine residues in catalysis by succinate dehydrogenase. In the present study, a combination of site-directed mutagenesis and chemical modification techniques have been used to investigate the role(s) of the conserved histidine 232, cysteine 247, and arginine 248 residues of the flavorprotein subunit (FrdA) in active site function. A role for His-232 and Arg-248 of FrdA is shown by loss of both fumarate reductase and succino-oxidase activities following site-directed substitution of these particular amino acids. Evidence is also presented that suggests a second arginine residue may form part of the active site. Potential catalytic and substrate-binding roles for arginine are discussed. The effects of removing histidine-232 of FrdA are consistent with its proposed role as a general acid-base catalyst. The fact that succinate oxidation but not fumarate reduction was completely lost, however, might suggest that alternate proton donors substitute for His-232. The data confirm that cysteine 247 of FrdA is responsible for the N-ethylmaleimide sensitivity shown by fumarate reductase but is not required for catalytic activity or the tight-binding of oxalacetate, as previously thought.  相似文献   

10.
11.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

12.
The mitochondrial succinate dehydrogenase (SDH) is a tetrameric iron-sulfur flavoprotein of the Krebs cycle and of the respiratory chain. A number of mutations in human SDH genes are responsible for the development of paragangliomas, cancers of the head and neck region. The mev-1 mutation in the Caenorhabditis elegans gene encoding the homolog of the SDHC subunit results in premature aging and hypersensitivity to oxidative stress. It also increases the production of superoxide radicals by the enzyme. In this work, we used the yeast succinate dehydrogenase to investigate the molecular and catalytic effects of paraganglioma- and mev-1-like mutations. We mutated Pro-190 of the yeast Sdh2p subunit to Gln (P190Q) and recreated the C. elegans mev-1 mutation by converting Ser-94 in the Sdh3p subunit into a glutamate residue (S94E). The P190Q and S94E mutants have reduced succinate-ubiquinone oxidoreductase activities and are hypersensitive to oxygen and paraquat. Although the mutant enzymes have lower turnover numbers for ubiquinol reduction, larger fractions of the remaining activities are diverted toward superoxide production. The P190Q and S94E mutations are located near the proximal ubiquinone-binding site, suggesting that the superoxide radicals may originate from a ubisemiquinone intermediate formed at this site during the catalytic cycle. We suggest that certain mutations in SDH can make it a significant source of superoxide production in mitochondria, which may contribute directly to disease progression. Our data also challenge the dogma that superoxide production by SDH is a flavin-mediated event rather than a quinone-mediated one.  相似文献   

13.
Succinate:quinone reductase catalyzes electron transfer from succinate to quinone in aerobic respiration. Carboxin is a specific inhibitor of this enzyme from several different organisms. We have isolated mutant strains of the bacterium Paracoccus denitrificans that are resistant to carboxin due to mutations in the succinate:quinone reductase. The mutations identify two amino acid residues, His228 in SdhB and Asp89 in SdhD, that most likely constitute part of a carboxin-binding site. This site is in the same region of the enzyme as the proposed active site for ubiquinone reduction. From the combined mutant data and structural information derived from Escherichia coli and Wolinella succinogenes quinol:fumarate reductase, we suggest that carboxin acts by blocking binding of ubiquinone to the active site. The block would be either by direct exclusion of ubiquinone from the active site or by occlusion of a pore that leads to the active site.  相似文献   

14.
The 1.8 A resolution crystal structure of the tetraheme flavocytochrome c3, Fcc3, provides the first mechanistic insight into respiratory fumarate reductases or succinate dehydrogenases. The multi-redox center, three-domain protein shows a 40 A long 'molecular wire' allowing rapid conduction of electrons through a new type of cytochrome domain onto the active site flavin, driving the reduction of fumarate to succinate. In this structure a malate-like molecule is trapped in the enzyme active site. The interactions between this molecule and the enzyme suggest a clear mechanism for fumarate reduction in which the substrate is polarized and twisted, facilitating hydride transfer from the reduced flavin and subsequent proton transfer. The enzyme active site in the oxidized form is completely buried at the interface between the flavin-binding and the clamp domains. Movement of the cytochrome and clamp domains is postulated to allow release of the product.  相似文献   

15.
Succinate dehydrogenase (SDH) participates in the mitochondrial electron transport chain by oxidizing succinate to fumarate and transferring the electrons to ubiquinone. In yeast, it is composed of a catalytic dimer, comprising the Sdh1p and Sdh2p subunits, and a membrane domain, comprising two smaller hydrophobic subunits, Sdh3p and Sdh4p, which anchor the enzyme to the mitochondrial inner membrane. To investigate the role of the Sdh3p anchor polypeptide in enzyme assembly and catalysis, we isolated and characterized seven mutations in the SDH3 gene. Two mutations are premature truncations of Sdh3p with losses of one or three transmembrane segments. The remaining five are missense mutations that are clustered between amino acids 103 and 117, which are proposed to be located in transmembrane segment II or the matrix-localized loop connecting segments II and III. Three mutations, F103V, H113Q, and W116R, strongly but specifically impair quinone reductase activities but have only minor effects on enzyme assembly. The clustering of the mutations strongly suggests that a ubiquinone-binding site is associated with this region of Sdh3p. In addition, the biphasic inhibition of quinone reductase activity by a dinitrophenol inhibitor supports the hypothesis that two distinct quinone-binding sites are present in the yeast SDH.  相似文献   

16.
17.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

18.
The Escherichia coli complex II homologues succinate:ubiquinone oxidoreductase (SQR, SdhCDAB) and menaquinol:fumarate oxidoreductase (QFR, FrdABCD) have remarkable structural homology at their dicarboxylate binding sites. Although both SQR and QFR can catalyze the interconversion of fumarate and succinate, QFR is a much better fumarate reductase, and SQR is a better succinate oxidase. An exception to the conservation of amino acids near the dicarboxylate binding sites of the two enzymes is that there is a Glu (FrdA Glu-49) near the covalently bound FAD cofactor in most QFRs, which is replaced with a Gln (SdhA Gln-50) in SQRs. The role of the amino acid side chain in enzymes with Glu/Gln/Ala substitutions at FrdA Glu-49 and SdhA Gln-50 has been investigated in this study. The data demonstrate that the mutant enzymes with Ala substitutions in either QFR or SQR remain functionally similar to their wild type counterparts. There were, however, dramatic changes in the catalytic properties when Glu and Gln were exchanged for each other in QFR and SQR. The data show that QFR and SQR enzymes are more efficient succinate oxidases when Gln is in the target position and a better fumarate reductase when Glu is present. Overall, structural and catalytic analyses of the FrdA E49Q and SdhA Q50E mutants suggest that coulombic effects and the electronic state of the FAD are critical in dictating the preferred directionality of the succinate/fumarate interconversions catalyzed by the complex II superfamily.  相似文献   

19.
Escherichia coli produces two enzymes which interconvert succinate and fumarate: succinate dehydrogenase, which is adapted to an oxidative role in the tricarboxylic acid cycle, and fumarate reductase, which catalyzes the reductive reaction more effectively and allows fumarate to function as an electron acceptor in anaerobic growth. A glycerol plus fumarate medium was devised for the selection of mutants (frd) lacking a functional fumarate reductase by virtue of their inability to use fumarate as an anaerobic electron acceptor. Most of the mutants isolated contained less than 1% of the parental fumarate reduction activity. Measurements of the fumarate reduction and succinate oxidation activities of parental strains and frd mutants after aerobic and anaerobic growth indicated that succinate dehydrogenase was completely repressed under anaerobic conditions, the assayable succinate oxidation activity being due to fumarate reductase acting reversibly. Fumarate reductase was almost completely repressed under aerobic conditions, although glucose relieved this repression to some extent. The mutations, presumably in the structural gene (frd) for fumarate reductase, were located at approximately 82 min on the E. coli chromosome by conjugation and transduction with phage P1. frd is very close to the ampA locus, and the order of markers in this region was established as ampA-frd-purA.  相似文献   

20.
The thermodynamic and catalytic properties of flavocytochrome c3 from Shewanella frigidimarina have been studied using a combination of protein film voltammetry and solution methods. As measured by solution kinetics, maximum catalytic efficiencies for fumarate reduction (kcat/Km = 2.1 x 10(7) M-1 s-1 at pH 7.2) and succinate oxidation (kcat/Km = 933 M-1 s-1 at pH 8.5) confirm that flavocytochrome c3 is a unidirectional fumarate reductase. Very similar catalytic properties are observed for the enzyme adsorbed to monolayer coverage at a pyrolytic graphite "edge" electrode, thus confirming the validity of the electrochemical method for providing complementary information. In the absence of fumarate, the adsorbed enzyme displays a complex envelope of reversible redox signals which can be deconvoluted to yield the contributions from each active site. Importantly, the envelope is dominated by the two-electron signal due to FAD [E degrees ' = -152 mV vs the standard hydrogen electrode (SHE) at pH 7.0 and 24 degrees C] which enables quantitative examination of this center, the visible spectrum of which is otherwise masked by the intense absorption bands due to the hemes. The FAD behaves as a cooperative two-electron center with a pH-dependent reduction potential that is modulated (pKox at 6.5) by ionization of a nearby residue. In conjunction with the kinetic pKa values determined for the forward and reverse reactions (7.4 and 8.6, respectively), a mechanism for fumarate reduction, incorporating His365 and an anionic form of reduced FAD, is proposed. The reduction potentials of the four heme groups, estimated by analysis of the underlying envelope, are -102, -146, -196, and -238 mV versus the SHE at pH 7.0 and 24 degrees C and are comparable to those determined by redox potentiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号